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ABSTRACT 

This study investigates PT symmetric quantum mechanics on the Euclidean Group E2, 

E3 and E4 manifolds, which embed the dynamics of the rotation groups SO(2), SO(3) 

and SO(4) on S1, S2 and S3 spheres, respectively. Hilbert spaces on these manifolds are 

constructed based on finite group representations of their Lie Algebras, with the E3 

representations studied including general spin representations. Non-Hermitian but PT 

symmetric (“PTS”) Hamiltonians that act on these representations are constructed out of 

Lie Algebra operators. It is shown that Euclidean Group manifolds support PTS 

Hamiltonians with regions of unbroken PT symmetry, inside which all their eigenvalues 

are real and outside which their eigenvalues generally form complex conjugate pairs. It 

is found that the properties of PTS Hamiltonians can be related to the types of Lie 

Algebra operators used in their construction, with different characteristic behaviours 

attributable to raising or lowering operators, which are distinct from those of position or 

momentum measurement operators. It is further found that the presence of unbroken PT 

symmetry is not determined simply by the operator form of a given PTS Hamiltonian, 

but also depends on the representation chosen. Thus, for PTS Hamiltonians 

incorporating directional potentials based on position operators, zero spin periodic 

(bosonic) representations exhibit regions of unbroken PT symmetry while half integer 

spin antiperiodic (fermionic) representations do not. The critical values associated with 

coupling parameters that demarcate these regions are calculated. The group theoretic 

and quantum mechanisms underlying the differences between the PT symmetric 

behaviours of different operators and different representations are discussed. 
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Chapter One 

Introduction  

One of the central principles of conventional quantum mechanics is the characterisation 

of the energy and dynamics of systems in terms of Hermitian Hamiltonians. Under 

Schrödinger’s Law, the state of a system with a Hermitian Hamiltonian evolves in a 

unitary manner and its norm is preserved over time. This happens because the 

Hermiticity of a Hamiltonian ensures the reality of the energy eigenvalues of the 

system. However, systems with non-Hermitian Hamiltonians can also have eigenstates 

with real eigenvalues and their evolution is similar to that of systems with Hermitian 

Hamiltonians. PT symmetric quantum mechanics explores the consequences of relaxing 

the conventional requirement of Hermiticity. 

It has been shown (Bender, 2007) that non-Hermitian Hamiltonians that exhibit PT 

symmetry, defined as invariance under the combination of Parity and Time Reversal 

transformations, can have entirely real energy eigenvalues. What makes this 

phenomenon particularly intriguing is that such systems often contain parametric 

regions inside which all eigenvalues are real, surrounded by regions in which some 

eigenvalues become complex. The result is that whether a given state is harmonic and 

stable on the one hand, or dissipative and unstable on the other, depends on a simple 

coupling parameter, and such systems can undergo phase transitions if critical values 

for this parameter are crossed.  

There is a growing body of experimental evidence that non-Hermitian but PT 

symmetric Hamiltonians provide a useful framework for understanding quantum 

mechanical systems in which critical points arise and phase transitions occur, such as 
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optical systems (Chong et al., 2011) and superconducting systems (Chtchelkatchev et 

al., 2010), (Rubinstein et al., 2007). 

The main objective of this paper is to investigate the extent to which this behaviour of 

non-Hermitian but PT symmetric quantum mechanical systems can be expected to 

extend from one-dimensional systems to systems with configuration spaces described 

by higher dimensioned manifolds. The particular manifolds studied herein include those 

associated with the Euclidean E2, E3 and E4 groups, in other words, the circle S1, 

sphere S2 and three-sphere S3, and their associated rotation groups SO(2), SO(3) and 

SO(4). The implementation of quantum mechanics on these manifolds follows the 

general approach (Isham, 1983) of identifying compatible conjugate operators based on 

geometric considerations and then using group theoretic methods to construct, from first 

principles, the possible representations of quantum states on the manifold, along with 

the Hamiltonians that may govern their evolution. 

This Chapter contains a summary of the principles underlying PT symmetric quantum 

mechanics, largely following Bender (Bender, 2007). Chapter Two then investigates the 

PT symmetry of E2, building upon aspects of recent work in this area (Bender and 

Kalveks, 2010). Chapters Three and Four extend the investigation to the E3 and E4 

groups. In the case of E3 the study covers general spin representations. It is found that 

non-Hermitian PT symmetric systems with entirely real eigenvalues can readily be 

constructed out of the elements of all these group algebras, with some important 

differences between the PT symmetric properties of states in different irreducible 

representations (“irreps”), such as bosonic and fermionic states of different spin. 

Chapter 5 discusses the interpretation of the findings, using group theoretic 

considerations to shed light on the behaviour of states in different representations, and 



Introduction 

 

3 

draws conclusions about the conditions under which non-Hermitian Hamiltonians 

exhibit unbroken PT symmetry. The potential extension of the methodology to study the 

dynamics of non-Hermitian systems on more complicated spacetime manifolds is also 

discussed. 

Principles of PT Symmetry 

According to the Stone-Von Neumann theorem, the classical quantum mechanical 

relations on a   !
n ! !n  configuration space of n objects with positions x̂i

µ  and 

momenta p̂! j ,, where the index i extends from 1 to n, are uniquely given by the 

Heisenberg commutation relations (Isham, 1983): 

 
 
x̂i
µ , p̂! j"# $% = i!&!

µ& ij .  (1.1) 

We shall henceforth work in natural coordinates such that c=1 and  ! = 1 .  

We can define the improper Lorentz group operations of Parity and Time Reversal 

acting on the time dimension and one of the spatial dimensions of d+1 dimensional 

spacetime as the discontinuous transformations: 

 
 

P : xi
! " #xi

!   where ! $ 1…d{ },
T : xi

0 " #xi
0 .

 (1.2) 

These Parity and Time Reversal operators satisfy the relations: 

 
 

P 2 = T 2 = I ,
P,T[ ] = 0.

 (1.3) 

Classical quantum systems are described by Hermitian Hamiltonians that satisfy the 

Schrodinger equation: 

   H ! = i"t ! , where H = H†.  (1.4) 
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We can therefore equivalently associate the Time Reversal operator with the action of 

complex conjugation: 

 
 

P : xi
! " #xi

!  for ! $ 1…d{ },
T : i" #i.

 (1.5) 

In a representation where p̂! j = "i
#
#x j

! , the Heisenberg relations are invariant under the 

actions of  P and  T : 

 

P: p̂! j " # p̂! j ,

x̂i
µ , p̂! j$% &' = i(!

µ( ij " # x̂i
µ ,# p̂! j$% &' = x̂i

µ , p̂! j$% &' = i(!
µ( ij ;

T : p̂! j " # p̂! j ,

x̂i
µ , p̂! j$% &' = i(!

µ( ij " x̂i
µ ,# p̂! j$% &' = #i(!

µ( ij ; x̂i
µ , p̂! j$% &' = i(!

µ( ij .

 (1.6) 

We can naturally expect these spacetime symmetries of the Heisenberg algebra to be 

manifested in the symmetries of quantum systems.  

The Schrodinger equation (1.4) ensures that the evolution of a system is unitary and that 

the norm of a state is preserved over time: 

 
  

! = e" iHt ! 0 ,

! ! = ! 0 e
iH† te" iHt ! 0 = ! 0 ! 0 .

 (1.7) 

In the case where  H  is time independent, the spatial and temporal elements of states 

decouple and can be characterised by harmonic functions of constant energy:  

  H ! = E ! = i"t ! .  (1.8) 

If we have a Hermitian Hamiltonian matrix that is not in diagonal form, it can be 

diagonalised by a unitary transformation. 
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We can also transform any Hermitian Hamiltonian to a non-Hermitian Hamiltonian by 

a similarity transformation. For example, working within a matrix formulation and 

using the similarity transformation   S !GL N ,!( ) , where  S  is non-unitary and N is the 

dimension of the Hilbert space, we can consider the non-Hermitian Hamiltonian  N  

and its associated basis states !  given by: 

 
 

N ! SHS "1,
# = S $ .

 (1.9) 

The eigenvalues of any matrix are unaffected by a similarity transformation, and so, 

even though it is not generally the case that non-Hermitian Hamiltonians have real 

eigenvalues,  N  diagonalises to the same eigenvalues as  H . However, the basis states 

!  do not have the same norm as the !  states since   S
!1†S !1 " I  if  S  is non-

unitary: 

 

   

! ! = " S #1†S #1

!"
" #$ %$ " ,  where " $ " † . (1.10) 

In order to obtain the correct norm in the  N  basis, we must define the inner product 

using 
 
!!  from (1.10). This is analogous to using a metric on the Hilbert space to lower 

the Hermitian conjugate !  before taking the inner product. The inconvenience is that 

wavefunctions in the  N  basis are not self-adjoint with respect to the inner product and 

calculation of 
 
!!  from !  requires knowledge of the entire Hilbert space. 

If we consider the time development of this redefined norm we have: 
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!!t !t = !t S "1†S "1 !t

= !0 e
iN †tS "1†S "1e" iNt !0

= !0 e
iS"1†H†S†tS "1†S "1e" iSHS"1t !0

= !0 S "1†eiH
†tS †S "1†S "1Se" iHtS "1 !0

= !0 S "1†S "1 !0

= !!0 !0 ,

 (1.11) 

and so the redefined norm of !  is preserved over time by the underlying unitary 

evolution.  

The foregoing considerations apply to any non-Hermitian Hamiltonian that is related to 

a Hermitian Hamiltonian by some similarity transformation. We can now specialise to 

the case where  N  is PT symmetric, which means that:  

 
 
N ,PT!" #$ = 0.  (1.12) 

This entails a corresponding symmetry in  H  that may be expressed in terms of a new 

operator  C : 

 

 

N ,PT!" #$ = 0,

SHS %1,PT!" #$ = 0,

H,S %1PTS!" #$ = 0,

H,C[ ] = 0,  where C & S %1PTS.

 (1.13) 

From (1.3) and (1.13) we can show that the  C  operator always satisfies  C
2 = I . The  C  

operator is not unique since  N can be diagonalised in multiple ways given by the 

permutation group SN. Other properties of the  C  operator have also been examined 

(Bender and Mannheim, 2009), (Bender et al., 2004), (Bender and Jones, 2004), 

(Bender and Klevansky, 2009). 
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We shall henceforth refer to all non-Hermitian PT symmetric Hamiltonians simply as 

PT symmetric (“PTS”). Following established terminology (Bender, 2007), PT 

symmetric Hamiltonians are said to exhibit unbroken PT symmetry if all their 

eigenvalues are real. This condition is much more restrictive than that of simple PT 

symmetry and there are many PT symmetric Hamiltonians that have one or more 

complex eigenvalues. This latter category are said to exhibit broken PT symmetry. 

Certain PT symmetric Hamiltonians, including some of those studied in this paper, 

exhibit parametric regions (for some coupling constants) within which PT symmetry is 

broken as well as parametric regions within which PT symmetry is unbroken. 

Group Theoretic and Topological Approaches to Quantisation 

The group theoretic approach to quantisation starts from the Lie Algebra relations 

between quantum mechanical operators. Once a Lie Algebra is known, a maximal 

(Cartan) sub-algebra of commuting operators can be selected to provide a basis for 

describing and labelling quantum states of the system. The other operators within the 

Lie Algebra can in principle be arranged into raising and lowering operators acting 

upon these basis states. It then turns out that the spacetime symmetry properties of 

Hamiltonians constructed from these operators can be related to different operator roles 

within the Lie Algebra. 

Geometric considerations (Isham) require that momentum operators defined within a 

Lie Algebra should behave as dynamic vectors and generate integral curves or flows 

over a manifold. This in turn places a constraint on the permissible coordinate form of 

momentum operators. 
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For example, if we take our manifold as the real line  ! , with position operator 

x̂ ! = x ! , we can choose our Hermitian momentum operator to be p̂ = !i" / "x  and 

then the action of the unitary operator exp !iap̂( )  on x, where {a, x}∈  ! , produces a 

displaced value x – a ∈  ! . The flow remains on the manifold and we can therefore use 

this momentum operator to formulate consistent commutation relations as x̂, p̂[ ] = i . 

However, if we take our manifold as the half-line  ! + , parameterised by y, then the 

flow from exponentiation of the operator p̂ = !i" / "y  could lead to y – a ∈  ! ! , which 

is off the  ! +  manifold (Isham). We have to define momentum on  ! +  as 

p̂ = !iy" / "y to ensure flows remain on the manifold. We then obtain the less familiar 

form of commutation relations ŷ, p̂[ ] = iŷ .  

It can be observed that  x,!{ }  and  y,! +{ }  are related by the diffeomorphism y=exp(x) 

and we can infer that once we have a consistent flow over some manifold, we may 

relate this to a consistent flow on some other manifold, providing their coordinate 

systems can be linked by continuous smooth coordinate transformation or 

diffeomorphism. The resulting form of the canonical commutation relations may 

however look very different to the Heisenberg relations (1.1) ruling within  !n . 

Given a set of operators that are compatible with regard to some manifold, the Lie 

Algebra commutation relations between them can be determined and we can then 

explore the representation theory of the group, identifying irreps and complete sets of 

basis functions and their relationships. It is conventionally preferable to work with finite 

irreps that close under the action of the raising and lowering operators of the Lie 

Algebra. 
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Chapter Two 

PT Symmetry on E2  

Geometric Definition 

E2 is defined by the dynamics of the rotation group on the one sphere S1⊗SO(2). 

Following the geometric approach outlined above, we can establish consistent quantum 

mechanical operator relations on the S1 manifold, by pulling these back from the 

canonical Heisenberg relations (1.1) on  !2 , using an embedding of S1 in  !2  as a circle 

of unit radius. In order to parameterise position continuously on S1, we use two 

orthogonal coordinates and we define their respective operators as û and v̂ . We obtain 

the momentum operator Ĵ  on S1 by pulling back the angular momentum operator from 

 !
2 . The key relationships in this mapping of operators to their angular coordinate 

representation are: 

 

v̂ = x r=1 = rcos! r=1 = cos!,

û = y r=1 = rsin! r=1 = sin!,

Ĵ = x̂p̂y " ŷp̂x = rcos! "i#y( ) " rsin! "i#x( ) = "i
#y
#!

#y +
#x
#!

#x
$
%&

'
()
= "i#! .

 (2.1) 

We can verify that the operator Ĵ  is Hermitian and also that it exponentiates to give a 

unitary operator that generates a flow over the manifold in the form of a rotation: 

 exp i! Ĵ( ) v̂
û

"
#$

%
&'
= exp ! (

()
"
#$

%
&'

cos)
sin)

"

#$
%

&'
= cos! * sin!

sin! cos!
"

#$
%

&'
v̂
û

"
#$

%
&'
.  (2.2) 
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Lie Algebra 

The Lie Algebra of E2 (Isham, 1983) is given by these position and momentum 

operators on S1 and is readily verified to be: 

 

û,Ĵ!" #$ = iv̂,

v̂,Ĵ!" #$ = %iû,

û,v̂[ ] = 0.
 (2.3) 

As Isham notes, we recover the Heisenberg relations (1.1) in the limit of small 

displacements: 

 
û !"#̂,
v̂ ! 1,

Ĵ,û$% &' = (iv̂ ! "#̂, Ĵ$% &' = i.

 (2.4) 

The E2 group contains an Abelian ideal and is thus not simple or semi-simple. Its Lie 

Algebra has a quadratic Casimir operator Ĉ 1, which commutes with all the other 

operators, and which can be interpreted in terms of the unit radius of the embedding 

circle:  

 
Ĉ = û2 + v̂2 = I ,

Ĉ, û!" #$ = Ĉ,v̂!" #$ = Ĉ, Ĵ!" #$ = 0.
 (2.5) 

Quantum states of S1 can thus be characterised by the radius of the embedding circle 

and one of the three non-commuting operators, which we choose to be the momentum 

operator Ĵ  so that we can describe dynamics. The position operators can be combined 

                                                

1 The Casimir Ĉ  is unrelated to the  C  symmetry operator discussed in Chapter One. 
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into raising and lowering operators Ŵ±  which increment or decrement the angular 

momentum eigenvalue by an integer: 

 

Ŵ± = v̂ ± iû,

Ŵ+ ,Ŵ!"# $% = 0,

Ĵ,Ŵ±"# $% = Ŵ± .

 (2.6) 

We can now observe that, while Ĵ  is a Hermitian operator, neither of the raising and 

lowering operators are Hermitian. However, if we take Parity as the reflection  

 P : û, v̂( )! "û, v̂( ) , then we see that Ŵ+  and Ŵ!  are both PT symmetric. This non-

Hermitian, but PT symmetric nature of raising and lowering operators plays a key role in 

determining the behaviour of the eigenstates of PT symmetric Hamiltonians. 

Basis for Eigenstates 

The momentum operator has its eigenstates given by the irreps of SO(2) or U(1), which 

is the symmetry group of S1. Thus, Ĵ  has an infinite sequence of eigenstates, which are 

harmonic with respect to θ, and which have real eigenvalues: 

 
Ĵ ! m = "i#$ ! m = m ! m  ,

! m % eim$ .
 (2.7) 

The condition of periodicity under rotation by 2π leads to the constraint that m should 

take positive or negative integer values. Following Bender (Bender and Kalveks, 2010), 

we shall relax this condition and also consider antiperiodic states for which m takes 

half-integer values. The normalised free eigenstates ! m =
1
2"

eim# , where 

m = !",…0, 1
2
,1,…" , then form a complete basis for the Fourier decomposition of a 
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state into its periodic (bosonic) and antiperiodic (fermionic) components. Choosing 

Parity as the reflection  P : û, v̂( )! "û, v̂( )#$ ! "$ , the basis states have the 

spacetime symmetry transformation properties: 

 

 

P : ! m = eim" # eim $"( ) = !$m ,

T : ! m = eim" # e $ i( )m" = !$m ,

PT : ! m = eim" # e $ i( )m $"( ) = ! m .

 (2.8) 

Thus, while  P  and  T  taken individually reverse the sign of m, we have the result that 

the eigenstates of the Hermitian operator Ĵ  are PT symmetric. 

Hermitian and PT Symmetric Hamiltonians 

We can form a Hamiltonian over S1 from the combination of the momentum operator 

(squared to achieve dimensions consistent with energy) with a potential V̂ û, v̂( ) . For 

example, to construct a Hermitian Hamiltonian, we can set V̂ = gv̂ , where g is some 

constant real coupling parameter, and obtain: 

 Ĵ 2 ! + gv̂ ! = E !  . (2.9) 

This Hamiltonian is related by a simple transformation of coordinates and redefinition 

of parameters to the Mathieu equation (Bender and Orszag, 1978): 

 
d 2y
dt 2

+ a + 2! cos t( )y = 0.  (2.10) 

The solutions to the Mathieu equation have various well-defined properties, which map 

to properties of the eigenstates and eigenvalues of the Hamiltonian (2.9). For any value 

of the parameter g, two infinite series of solutions to (2.9) exist: symmetric solutions 

Cn(g) and anti-symmetric solutions Sn(g). The eigenstates in each series alternate 



PT Symmetry on E2 

 

13 

between being periodic and antiperiodic and can be labelled by a number n, which 

takes integer values for periodic solutions and half-integer values for antiperiodic 

solutions. For n=0, there are only symmetric eigenstates C0(g).  

If the potential vanishes (g=0), the symmetric and the anti-symmetric eigenstates are 

degenerate in terms of E and we recover the free eigenstate basis (2.7) with the 

eigenvalue E given by m2. For this case, the symmetric and antisymmetric Mathieu 

solutions reduce to the cosine and sine series respectively and so the free eigenstate 

basis (2.7) is related to the Mathieu equation solutions (up to normalisation) by: 

 ! m = Cm 0( ) + iSm 0( ).  (2.11) 

For g non-zero and real, the symmetric and anti-symmetric eigenstates of (2.9) become 

non-degenerate and their eigenvalues split. Importantly, however, the eigenvalue E 

remains real for all real values of g, as is to be expected from a Hermitian Hamiltonian. 

Interestingly, we can use this latter property to derive a set of non-Hermitian 

Hamiltonians that also have entirely real eigenvalues. The implicit assumption of 

traditional quantum mechanics is that coordinates are integrated along their real axes 

(Bender, 2007). This choice of contour, along with explicit or implicit boundary 

conditions, establishes the constraints necessary to solve the wave equation and to 

determine the energy spectrum. In the case of the 2D system we are considering, the 

appropriate boundary condition is one of periodicity in 2π and this defines the 

wavefunction solution in the case that the contour along which the eigenstates are 

integrated is the real θ axis. We can however consider the consequences of selecting a 

different contour of integration.  
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A simple way of doing this is to displace the coordinate system along the imaginary 

axis, while retaining the requirement for periodicity over 2π  along the real axis. This is 

achieved by the coordinate and parameter substitutions ! "! + i#  and g! g / cosh" , 

for some arbitrary fixed real α. Under these substitutions, equation (2.9) becomes: 

 Ĵ 2! + g v̂ " i!û !tanh#( )! = E! .  (2.12) 

Since we have only made a coordinate substitution, the eigenfunctions retain their 

eigenvalues E, which therefore remain real. 

This is now no longer a Hermitian Hamiltonian, but rather a PT symmetric 

Hamiltonian, under Parity chosen as  P : û, v̂( )! "û, v̂( ) . This Hamiltonian is a 

representative of a class of PT symmetric Hamiltonians for arbitrary real g and real α. 

The limits |tanh α| ≤1  bound a parametric region inside which this PT symmetric 

Hamiltonian has all real eigenvalues. For the limiting cases tanh α=±1, the potential 

becomes V̂ û, v̂( ) = gŴ±  and so we see that the raising and lowering operators, when 

incorporated into simple potentials, give rise to unbounded regions of unbroken PT 

symmetry. (For values of tanh α>1 (α complex), the eigenvalues are no longer real.) 

We can also adopt a direct approach to exploring the reality of the eigenvalues of a PT 

symmetric form of (2.9) by taking the coupling parameter to be imaginary. This leads to 

a Hamiltonian that is PT symmetric under Parity chosen as  P : û, v̂( )! û,"v̂( ) : 

 Ĵ 2! + iRe g( ) v̂! = E!  .  (2.13) 

If we wish to understand the behaviour of eigenvalues under this imaginary potential, 

we cannot just draw upon the general properties of Mathieu functions, but rather need to 

investigate numeric solutions to the equations. 
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Solution Methodology: Mathieu Functions vs Matrix Diagonalisation 

The Mathieu equation solutions are implemented within Mathematica and this gives 

one route for obtaining eigenstates and their eigenvalues for arbitrary complex values of 

the coupling parameter g. To achieve generality and to obtain greater insight into the 

splitting and mixing of eigenstates, we can alternatively work within a matrix 

mechanics framework. Both methods give numerically equal results. 

Given a general potential V̂ û, v̂( ) , suppose we require the solutions to the equation: 

 Ĵ 2 ! E + V̂ ! E = E ! E .  (2.14) 

In the absence of a general analytic solution, we may proceed by expanding the solution 

in terms of the free eigenstate basis: 

 ! E = am ! m
m
" .  (2.15) 

We can then rearrange (2.14) and restate the Hamiltonian relative to the eigenstate basis 

using the completeness and orthonormality properties of the basis to obtain: 

 
 

! "m m2 + V̂ û, v̂( ) ! m

Hamiltonian
! "#### $####

am
m
# = E !a "m .  (2.16) 

The resulting relationships are in the form of a typical eigenvalue matrix equation 

 Ha = Ea , albeit over a vector space of infinite dimension. While this may make an 

exact solution intractable, we can investigate whether numeric eigenvalue solutions 

converge acceptably when a finite subset of eigenvalues is diagonalised (i.e. within a 

finite m×m matrix for some integer m). This is a version of the Galerkin method 

(Bender and Orszag, 1978). 
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In the case where V̂ û, v̂( ) = gv̂ = g!cos! , we can evaluate the matrix elements 

analytically: 

 ! "m V̂ û, v̂( ) ! m =
g
2#

ei m$ "m( )% cos% d%& =
1
2
g ' "m $1,m + ' "m +1,m( )  (2.17) 

 m2! "m m +
1
2
g ! "m #1,m + ! "m +1,m( )$

%&
'
()m

* !am = E !a "m  (2.18) 

The g cosθ potential, being a combination of the raising and lowering operators, only 

mixes immediately adjacent bosonic or immediately adjacent fermionic states separated 

by a single integer m value. Thus, for the periodic series given by integer values of m, 

we obtain the Hamiltonian matrix: 

 

!m H m "m … "1 0 1 … m

"m m2 g / 2 0 0 0 0 0
g / 2 … g / 2 0 0 0 0

"1 0 g / 2 1 g / 2 0 0 0
0 0 0 g / 2 0 g / 2 0 0
1 0 0 0 g / 2 1 g / 2 0

0 0 0 0 g / 2 … g / 2

m 0 0 0 0 0 g / 2 m2

.  (2.19) 

It will be recalled that the trace of a matrix is invariant under diagonalisation, with the 

degree of mixing between diagonal terms dependent on the coupling introduced by the 

off diagonal elements. One consequence of the symmetric tridiagonal form, combined 

with the relative scaling between the diagonal terms (increasing as m2) and their 

adjacent elements (fixed at g/2) is that relatively little mixing occurs between distant 

diagonal terms. Thus, for small values of the parameter g, a very good approximation to 

the first few eigenvalues can be obtained with a matrix of a manageable size. The first 
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six fermionic and bosonic eigenvalues in the next section were obtained using a 12 x 

12 matrix, at which point numeric convergence had occurred to 4 significant figures for 

the range of potentials considered. The eigenstates of the system determined by this 

diagonalisation process are superpositions of the basis states and correspond to the 

symmetric and antisymmetric Mathieu functions. 

Eigenvalue Splitting Patterns: gv̂  or gcos!  potential 

The patterns of eigenvalue splitting for the first few eigenstates in the bosonic and 

fermionic series under a g cosθ potential, for real and imaginary values of the coupling 

parameter, are shown in Figures 1 to 6. 

For g non-zero and real, the symmetric and anti-symmetric functions become non-

degenerate and their eigenvalues split, with the degree of splitting increasing with g, but 

reducing with m.  The eigenvalues are real, although at least the first one takes a 

negative value. 

Intriguingly, even though complex values of the parameter g invariably lead to complex 

eigenvalues (not shown), imaginary values of g can support real eigenvalues in certain 

circumstances. 
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Figure 1. Bosonic eigenvalues for real values of g in the range (–50,50). The blue 

curves represent symmetric eigenfunctions m=0 to 6 and the green curves represent 

antisymmetric eigenfunctions m=1 to 6. The E axis intercepts give m2 eigenvalues. 

 
Figure 2. Fermionic eigenvalues for real values of g in the range (–50,50). The red 

curves represent symmetric eigenfunctions m=1/2 to 11/2 and the green curves 

represent antisymmetric eigenfunctions m=1/2 to 11/2. The E axis intercepts give m2 

eigenvalues. 
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Figure 3. Real components of bosonic eigenvalues for values of g in the range (–50i, 

50i). The blue curves represent symmetric eigenfunctions m=0 to 5 and the green curves 

represent antisymmetric eigenfunctions m=1 to 6. The E axis intercepts give m2 

eigenvalues. 

 
Figure 4. Imaginary components of bosonic eigenvalues for values of g in the range (–

50i, 50i). The blue curves represent conjugate pairs for symmetric eigenfunctions m=0 

to 5 and the green curves represent conjugate pairs for antisymmetric eigenfunctions 

m=1 to 6. 
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Figure 5. Real components of fermionic eigenvalues for values of g in the range (–50i, 

50i). The curves represent eigenfunctions m=1/2 to 11/2. The E axis intercepts give m2 

eigenvalues. 

 

 
Figure 6. Imaginary components of fermionic eigenvalues for values of g in the range 

(–50i, 50i). The curves represent conjugate pairs for eigenfunctions m=1/2 to 11/2. 

There is no region of unbroken PT symmetry. 
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Several points are noteworthy: 

(1) For real values of g, both the bosonic and fermionic series have real eigenvalues 

throughout. 

a. The bosonic eigenvalues are shifted from the m2 values {1, 4, 9, 16, 25, 

36…} ruling at g=0 and the degeneracy between the symmetric and 

antisymmetric series for m>0 is broken with the symmetric series being 

shifted upwards relative to the antisymmetric series. 

b. The fermionic eigenvalues are similarly shifted from the m2 values {1/4, 

9/4, 25/4, 49/4, 81/4, 121/4…} ruling at g=0 and the degeneracy between 

the symmetric and antisymmetric series is broken with the symmetric series 

being shifted upwards relative to the antisymmetric series. 

c. The ground state with m=0 has its E eigenvalue shifted below zero. 

(2) For imaginary values of g, the behaviours of the bosonic and fermionic series 

differ markedly. 

a. In the case of the bosonic series, the eigenvalues remain real for small 

imaginary values of g, but as g increases, each adjacent pair converges to a 

critical real value, beyond which any further increase in g gives rise to a 

complex conjugate pair. The symmetric and antisymmetric series combine 

separately into these complex conjugate pairs. 

b. In the case of the fermionic series, an arbitrarily small imaginary value of g 

gives rise to a complex conjugate pair. The antisymmetric and symmetric 

series remain degenerate. 
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The critical imaginary values of g at which splitting into conjugate pairs occurs for each 

eigenstate pair are summarised in the table below. Below the first critical value, all the 

bosonic eigenstates of the PT symmetric Hamiltonian (2.9) enjoy a region of unbroken 

PT symmetry. The fermionic eigenstates do not exhibit regions of unbroken PT 

symmetry. This difference in behaviour appears to be related to the different structure of 

the fermionic Hamiltonian matrix, in which the unperturbed eigenstates all start off as 

degenerate pairs since there is no m=0 state. 

 

Eigenstate!Pairs
m1,m2{ } Series

Critical !Value
g

0,1{ } Symmetric 0.7344 !I
1,2{ } Antisymmetric 3.4645!I
2,3{ } Symmetric 8.2356!I
3,4{ } Antisymmetric 15.0484 !I
4,5{ } Symmetric 23.9030!I
5,6{ } Antisymmetric 34.7994 !I

 (2.20) 

Other potentials 

It is natural to ask how the behaviour of potentials based on other elements of the Lie 

Algebra compares. By S1 symmetry, a û  potential is similar to v̂ . 

However, if we work with just the raising operator V̂ = gŴ+ , then the Hamiltonian 

matrix takes the form 
 
H = m2! "m m +

1
2
g! "m +1,m , which is upper triangular and 

diagonalises to give real m2 eigenvalues that are unchanged from the basis states, 

regardless of the value of g (although the basis states are mixed into superpositions by 

the potential). Thus the raising and lowering operators W±  both give rise to unbounded 

regions of unbroken PT symmetry for both bosonic and fermionic states. 



PT Symmetry on E2 

 

23 

Finally we can consider a potential V = gĴ . This leads to a Hamiltonian matrix of the 

form  H = m2! "m m + gm! "m ,m , which is Hermitian if g is real or is PT symmetric if g is 

imaginary. However, the Hamiltonian is already in diagonal form, with the result that if 

g is imaginary, then all the eigenvalues are complex (except for m=0), and so neither 

the bosonic nor the fermionic states have a region of unbroken PT symmetry. 

Key Findings: E2 

Quantum mechanics on the S1! SO 2( )  manifold, characterised by the E2 group, 

contains non-Hermitian, but PT symmetric Hamiltonians. These include Hamiltonians 

of the form: 

 

 

Ĥ û, v̂( ) = Ĵ 2 + g v̂ ! i!û !tanh"( ) g and  " !real( ),
Ĥ Ŵ±( ) = Ĵ 2 + gŴ± g!real or imaginary( ),
Ĥ v̂( ) = Ĵ 2 + gv̂ g!imaginary( ),
Ĥ û( ) = Ĵ 2 + gû g!imaginary( ).

 (2.21) 

In the cases of  Ĥ û, v̂( )  and 
 
Ĥ Ŵ±( ) , we have shown that unbounded regions of 

unbroken PT symmetry exist, regardless of whether eigenfunctions are bosonic 

(periodic over 2π) or fermionic (antiperiodic over 2π ). In the cases of  Ĥ v̂( )  and 

 Ĥ û( ) , we have shown that regions of unbroken PT symmetry exist only for the bosonic 

series for values of g below a critical value. These Hamiltonians can naturally be 

generalised using the rotational symmetry of S1 and should be viewed as representatives 

of equivalence classes. 
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Chapter 3 

PT Symmetry on E3  

Geometric Definition 

Quantum mechanics on E3 can be viewed as a generalisation from S1 to S2 and the 

wavefunctions of E3 systems are characterised in terms of the dynamics of the rotation 

group on the two sphere S2⊗SO(3). Following the geometric approach, we obtain 

position and momentum operators and their algebra by pulling back the Heisenberg 

relations (1.1) from Cartesian coordinates over  !
3  onto the surface of an S2 sphere of 

unit radius. In order to parameterise position continuously on S2, we need to use three 

orthogonal coordinates and we define the respective operators as û , v̂  and ŵ . We 

obtain three momentum operators Ĵu , Ĵv  and Ĵw  on S2 by pulling back the orbital 

angular momentum operators from  !
3 . The key relationships in this mapping are: 

 

û = x r=1 = r sin! cos" r=1 = sin! cos",

v̂ = y r=1 = rsin! sin" r=1 = sin! sin",

ŵ = z r=1 = rcos! r=1 = cos!.

 (3.1) 

 

 

Ĵu = ŷp̂z ! ẑp̂y = !i! y
"
"z

! z
"
"y

#
$%

&
'(
= i sin) "

"*
+
cos)cos*
sin*

"
")

#
$%

&
'(
,

Ĵv = ẑp̂x ! x̂p̂z = !i! z
"
"x

! x
"
"z

#
$%

&
'(
= i !cos) "

"*
+
sin)cos*
sin*

"
")

#
$%

&
'(
,

Ĵw = x̂p̂y ! ŷp̂x = !i! x
"
"y

! y
"
"x

#
$%

&
'(
= !i

"
")
.

 (3.2) 
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As in the case of E2, we can verify that the angular momentum operators are 

Hermitian and that they exponentiate to give unitary operators that generate flows over 

S2 in the form of rotations, for example:  

exp i! Ĵw( )
û
v̂
ŵ

"

#

$
$

%

&

'
'
= exp ! (

()
"
#$

%
&'

sin* cos)
sin* sin)
cos*

"

#

$
$
$

%

&

'
'
'
=

cos! + sin! 0
sin! cos! 0
0 0 1

"

#

$
$

%

&

'
'

û
v̂
ŵ

"

#

$
$

%

&

'
'
. (3.3) 

This straightforward geometric construction needs to be modified in order to 

incorporate spin angular momentum, as discussed later. 

Lie Algebra 

We can derive the Lie Algebra between the three position and three momentum 

operators of E3 to obtain a total of 21 commutation relations (Willard Miller, 1964): 

 

û, Ĵv!" #$ = i%uvwŵ (9 relations),

Ĵu , Ĵv!" #$ = i%uvw Ĵw (6 relations),

[û, û]=[û, v̂]=[v̂, ŵ]=0 (6 relations).

 (3.4) 

The position operators form an Abelian ideal. The Lie Algebra of E3 has two quadratic 

Casimir operators given by Ĉ = û2 + v̂2 + ŵ2  and by Ô = ûĴu + v̂Ĵv + ŵĴw , which 

commute with all operators. The first, Ĉ = 1  represents the unit radius of the S2 sphere 

and the second Ô = 0  captures the spin zero condition implicit in the angular 

momentum operator representation used in (3.2). 

We can introduce a total momentum operator by defining Ĵ 2 ! Ĵu
2 + Ĵv

2 + Ĵw
2  and find 

that this commutes with all the components of momentum, but not with any of the 

position operators: 
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Ĵu , Ĵ

2!" #$ = Ĵv , Ĵ
2!" #$ = Ĵw , Ĵ

2!" #$ = 0,

Ĵ 2 , ŵ!" #$ = i û, Ĵv{ } % i Ĵu , v̂{ } and cyclic permutations.
 (3.5) 

We can thus characterise the eigenstates of an E3 system in terms of the two 

eigenvalues of a Cartan sub algebra (or maximal commuting subset) of two operators: 

Ĵ 2  plus a chosen component of angular momentum, say Ĵw . The Lie Algebra can then 

be recast in terms of Ĵw , ŵ  and the raising and lowering operators Ĵ± = Ĵu ± iĴv  and 

Ŵ± = û ± iv̂ . This leads to the restated commutation relations: 

 

Ĵw , Ĵ±!" #$ = ± Ĵ± ,

Ĵ+ , Ĵ%!" #$ = 2 Ĵw ,

ŵ, Ĵ±!" #$ = Ĵw ,Ŵ±!" #$ = ±Ŵ± ,

Ŵ+ , Ĵ%!" #$ = Ĵ+ ,Ŵ%!" #$ = 2ŵ,

ŵ,Ŵ±!" #$ = Ŵ± ,Ŵ±!" #$ = Ĵw ,!ŵ!" #$ = Ŵ+ , Ĵ+!" #$ = Ŵ% , Ĵ%!" #$ =

Ĵw , Ĵw!" #$ = Ĵ+ , Ĵ+!" #$ = Ĵ% , Ĵ%!" #$ = 0,

&

'

(
(
(
(
(

)

(
(
(
(
(

21 relations  (3.6) 

 

 

Ĵ 2 , Ĵ±!" #$ = 0,

Ĵ 2 ,Ŵ±!" #$ = ± Ĵw ,Ŵ±{ } ! ŵ, Ĵ±{ }.
 (3.7) 

Both the Ĵ±  and the Ŵ±  raising and lowering operators increment or decrement the Ĵw  

eigenstate by an integer eigenvalue step, but only the Ĵ±  operators commute with Ĵ 2 . 

Thus the Ĵ± operators raise/lower momentum eigenstates within a single SO(3) (or 

SU(2)) irrep without affecting the total angular momentum, while the Ŵ±  operators 

generally mix up the irreps. 

In the geometric representation defined by (3.1) and (3.2), the raising and lowering 

operators can be expressed as: 
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Ĵ± = Ĵu ± iĴv = e

± i! i cos"
sin"

#
#!

±
#
#"

$
%&

'
()
,

Ŵ± = û ± iv̂ = sin"e
± i! ,

 (3.8) 

and the total angular momentum operator takes the form of the spherical Laplacian 

operator: 

 Ĵ 2 = Ĵ 2u + Ĵv
2 + Ĵw

2 = !
1
sin"

#
#"
sin" #

#"
+

1
sin2"

#2

#$ 2
%
&'

(
)*

+ !,"$
2 .  (3.9) 

The Ĵw , Ĵ 2  and position operators are Hermitian while the Ĵ±  and Ŵ±  operators are PT 

symmetric under Parity chosen as  P : û, v̂, ŵ( )! û,"v̂, ŵ( )!and!# ! "# . 

Basis for Eigenstates  

The Hamiltonian and associated Schrodinger equation for the free spin zero E3 system 

can be written in terms of the total angular momentum operator as: 

 Ĥ! = Ĵ 2! = "#$%
2 ! = E! ,  (3.10) 

where we omit constants of proportionality relating to mass, radius of S2, etc, for 

simplicity of presentation. The eigenstates are thus provided by the spherical harmonics 

Yl ,m !,"( ) , which are complex valued functions on the S2 sphere (Davies and Betts, 

1994): 

 Ĵ 2Yl ,m !,"( ) = #$!"
2 Yl ,m !,"( ) = l l +1( )Yl ,m !,"( ).  (3.11) 

The spherical harmonics provide a complete set of basis functions in terms of which a 

general function on S2 can be expanded. The energy eigenvalues E are degenerate with 

respect to m and are given by the series l(l+1), where l is an integer and –l ≤ m ≤ l. 
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These solutions can, however, only be used to examine perturbations of bosonic spin 

zero wavefunctions, and we wish to study general spin representations. 

Spin Representations 

The description of SO(3) rotations requires the use of three angular variables or Euler 

angles to capture the three SO(3) degrees of freedom and therefore the above 

description of states using the two orbital angles !,"( ) is incomplete. The orbital 

angular momentum operators (3.2) can, however, be generalised to incorporate a third 

angle, by a redefinition of the angular momentum raising and lowering operators (Brink 

and Satchler, 1968): 

 Ĵ± ! Ĵ± + Ŝ± ,  where!Ŝ± = "i Ŵ±

Ŵ+Ŵ"

#
#$

= "i e
± i%

sin&
#
#$

.  (3.12) 

The three Euler angles !,",#( )  fully characterise the possible rotations on the manifold. 

It can readily be verified that these new angular momentum operators obey the same Lie 

Algebra relations (3.6), due to the particular construction of the Ŝ± terms.  

The harmonic eigenstate solutions to equations incorporating the generalised operators 

are of the form:  

 Ys,m
l !,",#( ) = Ys,ml !,"( )exp is#( )  (3.13) 

Combining (3.13) with (3.12) leads to an equivalent form of the generalised raising and 

lowering operators (Willard Miller, 1964) that incorporates a new quantum number s, 

where s can be positive or negative and is an integer for periodic representations or a 

half-integer for antiperiodic representations: 
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Ĵu = i sin!
"
"#

+
cos!cos#
sin#

"
"!

$
%&

'
()
+ s cos!

sin#
,

Ĵv = i *cos! "
"#

+
sin!cos#
sin#

"
"!

$
%&

'
()
+ s sin!
sin#

,

Ĵw = *i "
"!
,

Ĵ± = e
± i! i cos#

sin#
"
"!

±
"
"#

+
s
sin#

$
%&

'
()
.

 (3.14) 

This redefinition leaves the Lie Algebra commutation relations (3.4) unaltered, but 

changes the value of the Casimir operator to Ô = s , measuring the spin of the 

representation. The total angular momentum operator also acquires extra spin terms: 

 Ĵ 2 = Ĵ 2u + Ĵv
2 + Ĵw

2 = !"#$
2 + 2is cos#

sin2#
%
%$

+
s2

sin2#
.  (3.15) 

Algebraically, the modified operators Ĵu , Ĵv  and Ĵw  now include components 

! sû / û2 + v̂2( ), sv̂ / û2 + v̂2( ), 0( ) , which represent an outward pointing vector 

field parallel to the equatorial plane, and the operators exponentiate to generate U(1) 

phase shifts in addition to rotations over θ and φ. This twisting feature of 

representations is sometimes termed a magnetic monopole (Tsiganov, 2006), (Isham, 

1983). For brevity we refer to it simply as spin. 

The SO(3) sub algebra of E3 is isomorphic to SU(2), which gives a double cover of 

SO(3). We can therefore think of the E3 algebra either as acting on a configuration 

space of S2 !!!SO 3( ) , or on S2 !!!SU 2( ) . The half-integer spin representations 

correspond to the latter case. 

Each pair of values for s and l defines the top state of an SO(3)/SU(2) irrep. The top 

state has angular momentum component m=l and its angular representation is 
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determined by requiring that it is annihilated by the Ĵ+  raising operator. A general state 

can then be found by applying the Ĵ!  lowering operator. 

The angular representation, excluding normalisation, of one of these generalised 

spherical harmonics is given (Willard Miller, 1964) by: 

Ys,m
l !,",#( )$ 1% cos!( )

s%m
2 1+ cos!( )%

s+m
2

dl%m

d cos!( )l%m
1% cos!( )l% s 1+ cos!( )l+ s&' ()e

im"eis# .  (3.16) 

The principle that each irrep should close under the action of both the Ĵ±  raising and 

lowering operators leads to the requirements that l≥|m| and l≥|s| and that the quantum 

numbers should be either all integer or all half-integer. The integer states are 2π 

periodic, while the half integer states are antiperiodic. 

The states constitute solutions to the Schrodinger equation: 

 
Ĵ 2Ys,m

l !,"( ) = #$!"
2 + 2is cos!

sin2!
%
%"

+
s2

sin2!
&
'(

)
*+
Ys,m

l !,"( ) = l l +1( )
E

!"#Ys,m
l !,"( ).  (3.17) 

Thus, each value of l defines a multiplet of degenerate states, for each value of s, 

labelled from m= –l to m=l, with their energy eigenvalues all given by the l(l+1) series. 

The first few generalised spherical harmonic states for spin values of s=0, ½ and 1 are 

listed in Table 1. If s=0, the solutions reduce to the standard spherical harmonics 

Ym
l !,"( ) . 
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Table 1. Generalised spherical harmonics for l≤2 and s=0, s=±½ and s=±1. 

 

l m s Ys,m
l !,"( )

0 0 0 1
1
2

±
1
2

±
1
2

1±
ms
cos! !e

±
m
i" /2

1 ±1 0 sin! !e
±
m
i"

1 0 0 cos!

1 ±1 ±1 1±
ms
cos!( )e±m i"

1 0 ±1 sin!
3
2

±
3
2

±
1
2

sin! 1±
ms
cos!e

±
m
i3" /2

3
2

±
1
2

±
1
2

1!
ms
3cos!( ) 1±ms cos! !e±m i" /2

2 ±2 0 sin2!e
±
m
i2"

2 ±1 0 sin! cos!e
±
m
i"

2 0 0 1# 3cos2!( )
2 ±2 ±1 1±

ms
cos!( )sin!e±m i2"

2 ±1 ±1 1!
ms
2cos!( ) 1±ms cos!( )e±m i"

2 0 ±1 sin! cos!

 

It can be seen that the Ŵ± operators link top or bottom states respectively in adjacent 

irreps with the same spin value. Also, Parity and Time Reversal transformations switch 

between the m-states and s-states within each l-multiplet. If we consider two possible 

choices for PT: 

 

 

PT : !,",i, s( )# !,$",$i, s( )
or

PT : !,",i, s( )# % $!,",$i, s( ).
 (3.18) 

we find the former leaves all the states invariant, while the second reverses the sign of 

m. In all cases, however, the irreps as a whole are invariant under PT. 
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These states can be normalised to provide a complete orthonormal basis (Willard 

Miller, 1964) and we can use this basis to analyse the general spin eigenstates of E3 

Hamiltonians with PT symmetric potentials. 

Hermitian and PT Symmetric Hamiltonians 

Let us suppose a potential V̂ û, v̂, ŵ,…( )  is applied to an E3 system with quantum 

numbers (l,m,s). In order to find the new eigenvalues, we can work in a matrix 

formalism using the complete free eigenstate basis and seek the solutions to the 

equation: 

 

 

Y !s , !m
!l l l +1( ) + V̂ û, v̂, ŵ,…( ) Ys,ml

Hamiltonian
! "###### $######

al ,m,s
l ,m,s
" = # # +1( )!a !l , !m , !s .  (3.19) 

In principle, to achieve completeness we have to diagonalise over all quantum numbers, 

however, when the potential has symmetry, we can work with a subset. We need to 

evaluate Hamiltonian matrix elements for a range of potentials constructed out of the 

Lie Algebra and there are established recursion relations that assist in this (Willard 

Miller, 1964): 

 ŵ! Ys,m
l =

l + m +1( ) l ! m +1( ) l + s +1( ) l ! s +1( )
l +1( )2 2l + 3( ) 2l +1( )

Ys,m
l+1 +…

+
sm

l l +1( ) Ys,m
l +

l + m( ) l ! m( ) l + s( ) l ! s( )
l2 2l +1( ) 2l !1( ) Ys,m

l!1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

,  (3.20) 

 

 

W± ! Ys,m
l =

!
l + s +1( ) l ! s +1( ) l ± m +1( ) l ± m + 2( )

l +1( )2 2l + 3( ) 2l +1( )
Ys,m±1

l+1 +…

+ l ± m +1( ) l ! m( ) s
l l +1( ) Ys,m±1

l +…

±
l + s( ) l ! s( ) l ! m !1( ) l ! m( )

l2 2l +1( ) 2l !1( ) Ys,m±1
l!1

"

#

$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'

. (3.21) 
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We thus have the tools to analyse the impact of a perturbing potential on the 

eigenvalues. We shall consider in detail the cases of potentials parameterised by g: 

 
V̂ = gŵ = g!cos!,

V̂ = gû = g!sin! cos" =
g
2
W+ +W#( ).

 (3.22) 

For g=0 the energy eigenvalues are given by the series l(l+1). For g real, both these 

Hamiltonians are Hermitian, and for g imaginary, both are PT-symmetric: 

 

 

PT : û, v̂, ŵ,i( ) ! û, v̂,"ŵ,"i( ),
i gŵ ! i gŵ

or
PT : û, v̂, ŵ,i( ) ! "û, v̂, ŵ,"i( ),

i gû ! i gû.

 (3.23) 

Consider first the directional potential V̂ = gŵ . Since the potential is invariant under 

rotation by φ, the m eigenvalues are unaffected. However, the potential causes mixing 

between l-states which results in changes in the l(l+1) energy eigenvalue, which we 

denote as λ(λ+1). The matrix element is calculated by substituting the recursion relation 

(3.20) into (3.22) and (3.19) to obtain the matrix Hamiltonian: 

 

H = +l l +1( )! "l ,l + g

l + m +1( ) l # m +1( ) l + s +1( ) l # s +1( )
l +1( )2 2l + 3( ) 2l +1( )

! "l ,l+1 +…

+
sm

l l +1( )!
"l ,l +

l + m( ) l # m( ) l + s( ) l # s( )
l2 2l +1( ) 2l #1( ) ! "l ,l#1

$

%

&
&
&
&
&

'

(

)
)
)
)
)

.  (3.24) 

Assuming l≥|m|≥|s| and fixing the minimum value of l by n=|m|, the symmetric matrix 

over l´l that we need to diagonalise takes the form: 
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H n,m, s n +1,m, s … n + k,m, s …

n,m, s n n +1( ) + g sm
n n +1( ) g … 0 0 0

n +1,m, s g
n +1+ s( ) n +1! s( )
n +1( )2 2n + 3( )

… … 0 0

… 0 … … … 0

n + k,m, s 0 0 … n + k( ) n + k +1( ) + g sm
n + k( ) n + k +1( ) g …

… 0 0 0 g
2n + k +1( ) k +1( ) n + k +1+ s( ) n + k +1! s( )

2n + 2k +1( ) 2n + 2k + 3( ) n + k +1( )2
…

.

 (3.25) 

This symmetric tridiagonal form does not generally arise, but is a feature peculiar to the 

g cosθ potential. The diagonal terms scale as the square of the row/column index k as 

the matrix increases in size, while the off-diagonal terms tend to g/2, so just as in the 

case of E2, we observe relatively little mixing between widely separated l-states. Also, 

we can note the presence on the diagonal of the parameter g. Thus, whenever g is 

imaginary, any set of l-states for non-zero spin s≠0 and m≠0 will have a trace that is 

imaginary, entailing at least one imaginary eigenvalue. 

Consider now the directional potential V = gû . This is related to the V = gŵ  potential 

by a simple rotation and therefore we expect to find the same results for zero spin. 

However, if spin is non-zero, we find different behaviours due to the different 

orientation relative to the spin direction. The matrix element is calculated by 

substituting the recursion relation (3.21) into (3.22) and (3.19) to obtain the matrix 

Hamiltonian: 
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H = l l +1( )! "l ,l! "m ,m +
g
2

#
l + s +1( ) l # s +1( ) l + m +1( ) l + m + 2( )

l +1( )2 2l + 3( ) 2l +1( )
! "l ,l+1! "m ,m+1…

+
l + s +1( ) l # s +1( ) l # m +1( ) l # m + 2( )

l +1( )2 2l + 3( ) 2l +1( )
! "l ,l+1…

+ l + m +1( ) l # m( ) s
l l +1( )! "l ,l! "m ,m+1…

+ l # m +1( ) l + m( ) s
l l +1( )! "l ,l! "m ,m#1…

+
l + s( ) l # s( ) l # m #1( ) l # m( )

l2 2l +1( ) 2l #1( ) ! "l ,l#1! "m ,m+1…

#
l + s( ) l # s( ) l + m #1( ) l + m( )

l2 2l +1( ) 2l #1( ) ! "l ,l#1! "m ,m#1

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

.
 (3.26) 

This potential mixes up adjacent m states in the same and neighbouring l-multiplets 

with the same s value. In the zero spin case, the mixing is limited to adjacent l-

multiplets. When constructing the mixing matrix, it is necessary to fix a spin value and 

then cycle through all the possible m states taking each l-multiplet in turn. This leads to 

a symmetric block tridiagonal structure for the Hamiltonian, as illustrated for s=0 and l 

ranging from 0 to 2: 

l,m, s 0,0,0 1,!1,0 1,0,0 1,1,0 2,!2,0 2,!1,0 2,0,0 2,1,0 2,2,0

0,0,0 0 g
6

0 !
g
6

0 0 0 0 0

1,!1,0 g
6

2 0 0 g
5

0 !
g
30

0 0

1,0,0 0 0 2 0 0 g
10

0 !
g
10

0

1,1,0 !
g
6

0 0 2 0 0 g
30

0 !
g
5

2,!2,0 0 g
5

0 0 6 0 0 0 0

2,!1,0 0 0 g
10

0 0 6 0 0 0

2,0,0 0 !
g
30

0 g
30

0 0 6 0 0

2,1,0 0 0 !
g
10

0 0 0 0 6 0

2,2,0 0 0 0 !
g
5

0 0 0 0 6

.

 (3.27) 
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The parameter g does not appear on the diagonal for any states and this meets a 

necessary condition for unbroken PT symmetry to arise when g is imaginary. Whether 

the block tridiagonal form is sufficient for unbroken PT symmetry to arise, however, 

needs to be explored numerically. (A matrix of approximately 100 by 100, covering the 

first 10 l-multiplets was diagonalised to generate the figures that follow). 

Eigenvalue Splitting Patterns: gŵ  or gcos!  potential 

Figure 7, Figure 8 and Figure 9 show the distortions of the first six or so energy 

eigenvalues under a Hermitian real potential V(θ)=g cosθ applied to states associated 

with component angular momentum numbers m up to 2 and spin values of zero 

(bosonic), spin ½ (fermionic) and spin 1 (bosonic). Although the eigenvalues become 

negative for large real potentials, they remain real in all cases. The potential breaks the 

degeneracy between the various m-states and the eigenvalues split. The bosonic spin 

zero energy perturbation is symmetric between positive and negative values of the 

potential, but the fermionic perturbations are skewed reflecting the sign of spin chosen 

relative to the sign of angular momentum component m. The splitting pattern of spin 

one bosonic energy levels is similar to that of spin zero bosons if the component angular 

momentum m=0, or otherwise similar to fermions in the case that m is non-zero. 
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Figure 7. Eigenvalues for E3 bosonic (s=0) states under a real g cosθ potential. The 

first six m=0 eigenvalues (blue) and the first five m=1 eigenvalues (green) are shown. 

Intercepts on the E axis are given by the l(l+1) series for l=0 to 5. 

 

 
Figure 8. Eigenvalues for the E3 fermionic (s=1/2) states under a real g cosθ potential. 

The first six m=1/2 eigenvalues (red) and the first five m=3/2 eigenvalues (green) are 

shown. Intercepts on the E axis are given by the l(l+1) series for l=1/2 to 11/2. 
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Figure 9 Eigenvalues for E3 bosonic (s=1) states under a real g cosθ potential. The first 

six m=0 eigenvalues (blue) and the first six m=1 eigenvalues (green) are shown. 

Intercepts on the E axis are given by the l(l+1) series for l=1 to 6. 

 

The eigenvalues associated with a PT symmetric imaginary g cosθ potential are shown 

in Figure 10 through Figure 15 for spin representations of zero, ½ and one. The 

eigenvalue splitting and mixing patterns differ significantly between the spin 

representations. The bosonic spin zero eigenvalues exhibit regions of PT-symmetry for 

small magnitudes of the potential, however, in the case of fermions, the eigenvalues 

become complex for an arbitrarily small PT symmetric potential and there is no region 

of unbroken PT symmetry. The spin one boson energy levels mix like those of spin zero 

bosons only if they have an angular momentum component m=0; otherwise they behave 

like fermions. 
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Figure 10. Real components of eigenvalues for E3 bosonic (s=0) states under an 

imaginary g cosθ potential. The first six m=0 eigenvalues (blue) and the first six m=1 

eigenvalues (green) are shown. Intercepts on the E axis are given by l(l+1) for l=0 to 6. 

 
Figure 11. Imaginary components of eigenvalues for E3 bosonic (s=0) states under an 

imaginary g cosθ potential. The first six m=0 eigenvalues (blue) and the first six m=1 

eigenvalues (green) are shown. There is a region of unbroken PT symmetry. 
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Figure 12. Real components of eigenvalues for E3 fermionic (s=1/2) states under an  

imaginary g cosθ potential. The first six m=1/2 eigenvalues (red) and the first five 

m=3/2 eigenvalues (green) are shown. Intercepts on the E axis are given by l(l+1) for 

l=1/2 to 11/2. 

 
Figure 13. Imaginary components of eigenvalues for E3 fermionic (s=1/2) states under 

an  imaginary g cosθ potential. The first six m=1/2 eigenvalues (red) and the first five 

m=3/2 eigenvalues (green) are shown. There is no region of unbroken PT symmetry. 
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Figure 14. Real components of eigenvalues for E3 bosonic (s=1) states under an 

imaginary g cosθ potential. The first six m=0 eigenvalues (blue) and the first five m=1 

eigenvalues (green) are shown. Intercepts on the E axis are given by l(l+1) for l=1 to 6. 

 
Figure 15. Imaginary components of eigenvalues for E3 bosonic (s=1) states under an 

imaginary g cosθ potential. The first six m=0 eigenvalues (blue) and the first five m=1 

eigenvalues (green) are shown. There is a region of unbroken PT symmetry only for 

m=0 states. 
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The spin zero bosons follow the E2 pattern, with pairs of eigenstates, starting with the 

lowest pair for a given value of m, being mixed, with their eigenvalues equalising at a 

particular critical point for each pair. If the potential is increased beyond this critical 

point, the eigenvalues become complex conjugates of each other. The mixing of the first 

pair occurs at a critical value of Im(g)= 1.8995 for the m=0 bosonic series. The critical 

values at which PT symmetry is broken for the m=1 series and m=2 series are increased 

to Im(g)= 5.4137 and Im(g)= 10.4289 (and correspondingly for higher values of angular 

momentum component m). 

 

Eigenstate!Pairs
l1,l2{ } m, s{ } Critical !Value

g

0,1{ } 0,0{ } 1.8995 I
2,3{ } 0,0{ } 11.4470 I
4,5{ } 0,0{ } 29.1571 I
1,2{ } 1,0{ }or 0,1{ } 5.4137 I
3,4{ } 1,0{ }or 0,1{ } 19.0367 I
5,6{ } 1,0{ }or 0,1{ } 40.8288 I
2,3{ } 2,0{ }or 0,2{ } 10.4289 I
4,5{ } 2,0{ }or 0,2{ } 28.1583 I

 (3.28) 

By virtue of the invariance of the Hamiltonian matrix (3.24) under interchange of m and 

s, the critical points for the non-zero spin bosons with m=0 are the same as those for 

zero spin bosons with non-zero m-values. Below the first critical value of the potential 

for each {m,s} pair all the bosonic eigenvalues are real and we have a characteristic 

region of unbroken PT symmetry. Above these critical values for each pair, only the 

higher bosonic eigenvalues remain real and the PT symmetry is broken. 
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Eigenvalue Splitting Patterns: gû  or gsin! cos"  potential 

By virtue of rotational S2 symmetry, when spin is zero, the eigenvalue splitting patterns 

for this V̂ = gû  potential are related to those for V̂ = gŵ  simply by the rotation of m-

states. Thus, for spin zero, if g is real, the Hamiltonian based on V̂ = gû  is Hermitian 

and if g is imaginary, the Hamiltonian is PT symmetric with a region of unbroken 

symmetry that breaks at the same critical values as V̂ = gŵ . 

In the case where spin is non-zero, the situation is more complicated. Figure 16 through 

Figure 19 show the impact of a V̂ = gû  potential on fermionic (s=1/2) eigenvalues and 

bosonic (s=1) eigenvalues. The essential changes from the pattern for the imaginary 

V̂ = gŵ  potential follow from the mixing of m-states, whose axis is now no longer 

oriented along the potential. Thus neither the fermions nor the spin 1 bosons have a 

region of unbroken symmetry, since the potential mixes the m=0 state with other m-

states. It can also be observed that the complex splitting pattern of the m-states in the 

higher multiplets causes a band structure for the eigenvalues to emerge. 
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Figure 16. Real components of eigenvalues for E3 fermionic (s=1/2) states under an 

imaginary g sinθ cosφ potential. The first three l-multiplets of m-states are shown, 

colour coded by multiplet. Intercepts on the E axis are given by l(l+1) for l=1/2 to 5/2. 

 

 
Figure 17. Imaginary components of eigenvalues for E3 fermionic (s=1/2) states under 

an imaginary g sinθ cosφ potential. The first three l-multiplets are shown colour coded. 

There is no region of unbroken PT symmetry. 
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Figure 18. Real components of eigenvalues for E3 bosonic (s=1) states under an 

imaginary g sinθ cosφ potential. m-states from the first four l-multiplets are shown, 

colour coded by pairings. Intercepts on the E axis are given by l(l+1) for l=1 to 4. 

 
Figure 19. Imaginary components of eigenvalues for E3 bosonic (s=1) states under an  

imaginary g sinθ cosφ potential. m-states from the first four l-multiplets are shown, 

colour coded by pairings. There is no region of unbroken PT symmetry. 



PT Symmetric Quantum Mechanics 

 

46 

Other potentials 

We can consider briefly the anticipated behaviour of potentials built from other 

elements of the Lie Algebra. Thus, by S1 symmetry, a v̂  potential is similar to û . 

Having established that potentials of the form g û  are Hermitian, we can also apply a 

coordinate similarity transformation  S !( ) , as in (2.12): 

 

 

S !( ) : " #" + i!,

g# g
cosh!

,

gû# g û $ i tanh! !v̂( ).
 (3.29) 

As in the case of E2, we find that the Hermitian position operator û  transforms into the 

PT symmetric raising and lowering operators W±  in the limiting cases as  ! " !# . 

These raising and lowering operators therefore have unbounded parametric regions of 

unbroken PT symmetry. 

Also, if we construct a potential from any single raising operator Ĵ±  or Ŵ± , we obtain a 

mixing matrix similar to an upper triangular matrix, for which the eigenvalues are 

unchanged from the free series. Thus the raising and lowering operators Ĵ±  and Ŵ±  all 

give rise to unbounded regions of unbroken PT symmetry for both bosonic and 

fermionic states. 

Finally we can consider a potential V = gĴw . This leads to a purely diagonal 

Hamiltonian, which is Hermitian if g is real or PT symmetric if g is imaginary. 

However, this Hamiltonian is already diagonalised, with the result that if g is imaginary, 

then the eigenvalues are generally complex, and neither the fermionic nor the bosonic 
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states (with the exception of m=0 states for which the V = gĴw  potential vanishes) 

have a region of unbroken PT symmetry. 

Key Findings: E3 

Quantum mechanics on the S2 ! SO 3( ) / SU 2( )  manifold, characterised by the E3 

group, contains non-Hermitian, but PT symmetric Hamiltonians. These include the 

following Hamiltonians, where Ĵ 2  is defined as in (3.15) to incorporate representations 

with non-zero spin: 

 

 

H ŵ( ) = Ĵ 2 + g!ŵ g!imaginary( ),
H û( ) = Ĵ 2 + g!û   g!imaginary( ),
H Ŵ±( ) = Ĵ 2 + g!Ŵ± g!real or imaginary( ),
H Ĵ±( ) = Ĵ 2 + g! Ĵ± g!real or imaginary( ),
H Ĵw( ) = Ĵ 2 + g! Ĵw g! imaginary( ).

(3.30) 

PT symmetric Hamiltonians  H ŵ( )  and  H û( )  have regions of unbroken PT symmetry 

for the bosonic zero spin zero series for imaginary g below certain critical values. 

Fermionic representations of E3, characterised by half-integer spin, do not possess such 

regions of unbroken PT symmetry. The situation of non-zero spin bosonic states is more 

complicated, with such states exhibiting regions of unbroken PT symmetry under 

 H ŵ( )  only for m=0. 

PT symmetric Hamiltonians  H W±( )  and  H J±( ) , which are based on raising or 

lowering operators, are upper or lower triangular and have unbounded regions of 

unbroken PT symmetry for all spin states. 
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PT symmetric Hamiltonians 
 
H Ĵw( )  have regions of unbroken PT symmetry only for 

m=0 quantum states. 

These Hamiltonians can naturally be generalised using rotational symmetries (subject to 

spin) and should be viewed as representatives of equivalence classes. 
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Chapter Four 

PT Symmetry on E4  

Geometric Definition 

E4 is defined by the dynamics of the rotation group on the three sphere S3⊗SO(4). 

Proceeding similarly to E3, we obtain the E4 Lie Algebra by pulling back the 

Heisenberg commutation relations (1.1) from Cartesian coordinates on a configuration 

space  !4  onto the surface of an S3 unit hypersphere. Thus, we introduce four position 

operators, subject to the overall constraint û2 + v̂2 + x̂2 + ŷ2 = 1  and define the six 

antisymmetric angular momentum operators: 

 

Ĵxy = x̂py ! ŷpx ,

Ĵvy = v̂py ! ŷpv ,

Ĵvx = v̂px ! x̂pv ,

Ĵuv = ûpv ! v̂pu ,

Ĵux = ûpx ! x̂pu ,

Ĵuy = ûpy ! ŷpu , ,

"

#

$
$
$
$

%

$
$
$
$

where px = !i&x , etc.  (4.1) 

These position and momentum operators then give us the Lie Algebra for E4. This Lie 

Algebra also applies to a larger covering group including non-zero spin representations 

(which is not analysed herein). 

Lie Algebra 

E4 contains 55 canonical commutation relations between the four position and six 

angular momentum operators. Taking care over permutations of indices, these fall into 

one of six types: 
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Ĵxu , Ĵyu!" #$ = iĴxy 12!relations( ),
Ĵxy , Ĵuv!" #$ = 0 3!relations( ),
Ĵxy , Ĵxy!" #$ = 0 6!relations( ),
û, Ĵxy!" #$ = 0 12!relations( ),
û, Ĵvu!" #$ = iv̂ 12!relations( ),
û, û[ ] = û, v̂[ ] = 0 10!relations( ).

 (4.2) 

The angular momentum operators form an SO(4) sub algebra, isomorphic to SU(2) 

⊕SU(2), and the position operators form an Abelian sub algebra. There are also four 

subsets of the Ĵxy operators that form SO(3)/SU(2) sub algebras, comprising:  

 

Ĵuv , Ĵvx , Ĵux{ },
Ĵuv , Ĵvy , Ĵuy{ },
Ĵxy , Ĵyu , Ĵxu{ },
Ĵxy , Ĵyv , Ĵxv{ }.

 (4.3) 

These sub-algebras are not independent, since any pair has non-commuting elements in 

common. 

The two Casimir operators of E4 include Ĉ = û2 + v̂2 + x̂2 + ŷ2 = 1 , which represents the 

radius of the S3 sphere, and also an analogue of the Pauli-Lubanski operator on the 

Lorentz-Poincare group (Jones, 1998), given by Ŵ 2 = Ŵx
2 + Ŵy

2 + Ŵu
2 + Ŵv

2 where 

Wx = ŷĴvu + v̂Ĵuy + ûĴyv  , etc. We can also define a total angular momentum operator 

Ĵ2 ! Ĵ2xy + Ĵ
2
yv + Ĵ

2
vx + Ĵ

2
uv + Ĵ

2
ux + Ĵ

2
uy , which commutes with all the angular momentum 

operators, but not with the position operators: 
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Ĵ2 , Ĵuv!" #$ = 0 6!relations( ),
Ĵ2 , û!" #$ = i Ĵuv , v̂{ } + i Ĵux , x̂{ } + i Ĵuy , ŷ{ } 4 !relations( ).

 (4.4) 

We can thus choose a maximum of three commuting operators Ĵ2 , Ĵxy , Ĵuv{ }  to 

characterise the eigenstates of the system and label their respective quantum numbers 

by l,m,n . The remaining momentum and position operators can be arranged into 

raising and lowering operator pairs. We introduce the four conjugate pairs of raising and 

lowering operators: 

 

Ĵ! ± = Ĵuy " Ĵxv ± i Ĵvy + Ĵxu( ),
Ĵ# ± = Ĵuy + Ĵxv ± i Ĵvy " Ĵxu( ),
U± = û ± iv̂,
X± = x̂ ± iŷ

 (4.5) 

and obtain 55 restated commutation relations equivalent to (4.2): 

Ĵuv ,Û±!" #$ = ±Û± , Ĵuv , Ĵ% ±!" #$ = ± Ĵ% ± , Ĵuv , Ĵ& ±!" #$ = ± Ĵ& ± ,

Ĵxy , X̂±!" #$ = ± X̂± , Ĵxy , Ĵ% ±!" #$ = ± Ĵ% ± , Ĵxy , Ĵ& ±!" #$ = ' ± Ĵ& ± ,

Ĵ% + , Ĵ% '!" #$ = 4 Ĵuv + Ĵxy( ), Ĵ% + ,Û'!" #$ = 2 X̂+ , Ĵ% + , X̂'!" #$ = '2Û+ ,

Ĵ&+ , Ĵ&'!" #$ = 4 Ĵuv ' Ĵxy( ), Ĵ&+ ,Û'!" #$ = '2 X̂' , Ĵ&+ , X̂+!" #$ = 2Û+ ,

Ĵ% ' ,Û+!" #$ = '2 X̂' , Ĵ% ' , X̂+!" #$ = 2Û' ,

Ĵ&' ,Û+!" #$ = 2 X̂+ , Ĵ&' , X̂'!" #$ = '2Û' ,

Ĵuv , Ĵuv!" #$ = Ĵxy , Ĵxy!" #$ = Ĵuv , Ĵxy!" #$ = Ĵ% ' , Ĵ% '!" #$ = Ĵ% + , Ĵ% +!" #$ = Ĵ&' , Ĵ&'!" #$ =

Ĵ&+ , Ĵ&+!" #$ = Ĵuv , X̂±!" #$ = Ĵxy ,Û±!" #$ = Ĵ% ± , Ĵ& ±!" #$ = Ĵ% + ,Û+!" #$ = Ĵ% + , X̂+!" #$ =

Ĵ&+ ,Û+!" #$ = Ĵ&+ , X̂'!" #$ = Ĵ% ' ,Û'!" #$ = Ĵ% ' , X̂'!" #$ = Ĵ&' ,Û'!" #$ = Ĵ&' , X̂+!" #$ =

Û± ,Û±!" #$ = Û± , X̂±!" #$ = X̂± , X̂±!" #$ = 0.

 (4.6) 

Since the U and X operators do not commute with J2, we can summarise the 

commutation relations in the following raising and lowering operator actions (which 
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have yet to be normalised and where we have yet to determine the action on l of U and 

X): 

 

Ô Ô l,m,n

Ĵ! + l,m +1,n +1

Ĵ"+ l,m #1,n +1

Ĵ! # l,m #1,n #1

Ĵ"# l,m +1,n #1

U± $l ,m,n ±1
X± $l ,m ±1,n

.  (4.7) 

These four pairs of raising and lowering operators hold the key to finding an eigenstate 

basis for E4 and to understanding the pattern of eigenvalue perturbations due to a 

potential. In particular, we note that the Ĵ±  raising and lowering operators either leave 

the sum m+n unchanged or change it by a double integer step. 

Basis for Eigenstates 

Similarly to the case of E3, the E4 algebra admits angular coordinate representations, 

one of which is given by the mapping: 

 

û ! cos" ,
v̂ !!sin" cos#,
x̂ !  sin" sin#cos$,
ŷ ! sin" sin# sin$.

 (4.8) 

We shall study systems characterised by zero spin (W2=0), in which case we can obtain 

the angular momentum operators by pulling back the orbital angular momentum 

operators from  !4  to S3. This leads to the operator representations: 
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U± = cos! ± isin! cos",
X± = sin! sin"e

± i# ,

Ĵxy = x̂py $ ŷpx = $i x̂
%
%y

$ ŷ
%
%x

&
'(

)
*+
= $i

%
%#
,

Ĵuv = ûpv $ v̂pu = $i û
%
%v

$ v̂
%
%u

&
'(

)
*+
= $i cos" %

%!
$
cos! sin"
sin!

%
%"

&
'(

)
*+
,

Ĵ, + = e
i# sin! cos" $ i cos!

sin! sin"
%
%#

$
cos! cos"
sin!

+ i
&
'(

)
*+
%
%"

$ sin" %
%!

-

.
/

0

1
2,

Ĵ, $ = e
$ i# $

sin! cos" + i cos!
sin! sin"

%
%#

+
cos! cos"
sin!

$ i
&
'(

)
*+
%
%"

+ sin" %
%!

-

.
/

0

1
2,

Ĵ3+ = e
$ i# sin! cos" $ i cos!

sin! sin"
%
%#

+
cos! cos"
sin!

+ i
&
'(

)
*+
%
%"

+ sin" %
%!

-

.
/

0

1
2,

Ĵ3$ = e
i# $

sin! cos" + i cos!
sin! sin"

%
%#

$
cos! cos"
sin!

$ i
&
'(

)
*+
%
%"

$ sin" %
%!

-

.
/

0

1
2.

 (4.9) 

These naturally satisfy the commutation relations (4.6) and allow us to form the total 

angular momentum operator or Laplacian: 

 Ĵ 2 = !
1

sin2"
#
#"

sin2" #
#"

+
1
sin$

#
#$
sin$ #

#$
+

1
sin2$

#2

#% 2
&
'(

)
*+
, !-"$%

2 .  (4.10) 

This enables us to construct a Hamiltonian for E4 and we can proceed first to find its 

free eigenstates and their eigenvalues spectrum and then to explore its perturbation 

under a potential. An eigenstate of E4 characterised by the l,m,n quantum labels 

introduced above must satisfy the following relations: 

 

Ĵxy! = "i
#
#$

! = m!,

Ĵuv! = "i cos% #
#&

"
cos& sin%
sin&

#
#%

'
()

*
+,
! = n!.

 (4.11) 

With a little help from Mathematica, we find this imposes solutions of the form: 
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 ! = F sin" sin#( ) cos# + i!cos" !sin#
cos# $ i cos" !sin#

%
&'

(
)*

n /2

eim+  (4.12) 

where F is an arbitrary function of sin! sin"  and m must be an integer if we require 2π 

periodicity over φ. We can impose further constraints on the solutions by requiring that 

the eigenstates should form finite representations. Suppose we define our top state ! top  

as one that is annihilated by both Ĵ! + and Ĵ!+ , so that Ĵ! +" top = Ĵ#+" top = 0 . By 

combining (4.9) and (4.12), we obtain: 

Ĵ! + :"m 1" sin# sin$( )2%& '( + n sin# sin$( )2 !+ sin# sin$ 1" sin# sin$( )2%& '(
)F
F

= 0,

Ĵ*+ :m 1" sin# sin$( )2%& '( + n sin# sin$( )2 + sin$ sin# 1" sin# sin$( )2%& '(
)F
F

= 0.
 (4.13) 

These can only both be non-trivially satisfied in the case m=0, whence: 

 

dF
F

=
!n sin" sin#( )d sin" sin#( )

1! sin" 2sin2#( ) ,

F $ 1! sin" 2sin2#( )
n
2 ,

% top $ cos" + i!cos# !sin"( )n .
 (4.14) 

Similarly, by requiring Ĵ! "#bottom = Ĵ$"#bottom = 0 , we obtain 

!bottom " cos# + i!cos$ !sin#( )%n . We take n to be an integer, so that irreps close under 

the raising and lowering operators in this zero spin representation. Thus, each top state 

value of n, which we can define as l, specifies a multiplet containing several m and n 

states. In each multiplet, m and n both vary between +l and –l and their permissible 

values are restricted further by the available raising/lowering operations. Table 2 sets 

out the first four E4 multiplets of S3 spherical harmonics for l values varying from 0 to 
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3. The eigenvalues of the total angular momentum operator J2 follow an l(l+2) series, 

being degenerate with respect to m and n. 

Table 2: E4 S3 spherical harmonics for l=0 to 3 (W2=0 representation) 

J 2 l m n ! l ,m,n " ,#,$( )
l l + 2( ) m < l n < l cos" + ( n / n)!i cos# sin"( ) n sin m# !sin m" eim$

0 0 0 0 1
3 1 ±1 0 sin# !sin" exp ±i$( )
3 1 0 ±1 cos" ± i cos# sin"
8 2 ±2 0 sin2# !sin2" exp ±2i$( )
8 2 ±1 ±1 cos" ±n i cos# sin"( )sin# !sin" exp ±m i$( )
8 2 0 ±2 cos" ± i cos# sin"( )2

8 2 0 0 1% 2sin2# sin2"
15 3 ±3 0 sin# !sin" exp ±i3$( )
15 3 ±2 ±1 cos" ±n i cos# sin"( )sin2# !sin2" exp ±m2i$( )
15 3 ±1 ±2 cos" ±n i cos# sin"( )2 sin# !sin" exp ±m i$( )
15 3 0 ±3 cos" ± i cos# sin"( )3

15 3 ±1 0 2 % 3sin2# sin2"( )sin# !sin" exp ±i$( )
15 3 0 ±1 1% 3sin2# sin2"( ) cos" ± i cos# sin"( )

 

It is helpful to normalise the eigenstates l,m,n  relative to the top state of each 

multiplet, taken as l,0,l . The normalisation follows from the commutation relations 

(4.6) and is calculated in the Appendix Normalisation of E4 Eigenstates, adapting 

established methodology for the Lorentz Group (Naimark, 1964). We obtain the result: 

 l,m,n = Nlmn ! Ĵ! "
l"m"n( )/2 ! Ĵ#"

l+m"n( )/2 l,0,l ,  (4.15) 

 Nlmn =
1

2l!n l!

l + m + n
2

"
#$

%
&' !

l ! m + n
2

"
#$

%
&' !

l ! m ! n
2

"
#$

%
&' !

l + m ! n
2

"
#$

%
&' !
.  (4.16) 
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Given the numerous spatial dimensions available, there exist alternative choices for the 

Parity transformation including: 

 

 

P v̂( ) : û, v̂, x̂, ŷ( )! û,"v̂, x̂, ŷ( ),
# ! "# ;

P ŷ( ) : û, v̂, x̂, ŷ( )! û, v̂, x̂," ŷ( ),
$ ! "$.

 (4.17) 

By choosing the appropriate reflection, we can see that a number, but not all, of the 

states are PT invariant. Each multiplet is however PT invariant, with Parity and Time 

Reversal transformations reversing the m and/or n values of the states. 

Hermitian and PT Symmetric Hamiltonians 

As for E2 and E3, we can construct PT symmetric Hamiltonians in E4 from imaginary 

potentials oriented along one of the coordinate axes and also from the raising and 

lowering operators. The directional potentials can also be expressed as linear 

combinations of the raising and lowering operators: û = 1
2
Û+ + Û!( ) , etc. Thus, we 

need to find the matrix elements for these raising and lowering operators relative to the 

eigenstate basis and then diagonalise the appropriate Hamiltonian matrix. We define a 

general perturbed state using the E4 basis states as ! = a "l "m "n "l , "m , "n
"l , "m , "n
# and obtain 

the eigenvalues E of perturbed states from the solutions to: 

 

 

l l + 2( )! l , "l !m, "m !n, "n + g l,m,n û "l , "m , "n
matrix !element

! "### $###

Hamiltonian !matrix
! "####### $#######

"l , "m , "n
# a "l "m "n = Eal ,m,n .  (4.18) 

We first evaluate the individual non-zero matrix elements analytically, following 

calculations set out in the Appendix Calculation of E4 Matrix Elements, which adapts 

established methodology (Naimark, 1964), to find: 
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l +1,m,n +1 û l,m,n =
1
4

l + m + n + 2( ) l ! m + n + 2( )
l +1( ) l + 2( ) ,

l !1,m,n +1 û l,m,n =
1
4

l + m ! n( ) l ! m ! n( )
l l +1( ) ,

l !1,m,n !1 û l,m,n =
1
4

l + m + n( ) l ! m + n( )
l l +1( ) ,

l +1,m,n !1 û l,m,n =
1
4

l + m ! n + 2( ) l ! m ! n + 2( )
l +1( ) l + 2( ) .

 (4.19) 

We arrange these elements into a Hamiltonian matrix by taking the multiplets in turn, 

starting from l=0 (1 component), l=1 (4 components), to some chosen maximum l-

value, scaling by g and adding the diagonal terms. Since the gû  or g cosψ potential 

does not mix m-states, we only need to enumerate over the n states in each l-multiplet 

for any fixed value of m. The matrix (4.20) shows the l=0,1,2 multiplets from a 

Hamiltonian matrix, where we have chosen m=0 and assigned signs using the Condon 

and Shortley phase convention for m and n states. 

!l , !m , !n Ĥ l,m,n 0,0,0 1,0,"1 1,0,1 2,0,"2 2,0,0 2,0,2

0,0,0 0 "
g
2 2

g
2 2

0 0 0

1,0,"1 "
g
2 2

3 0 "
g
6

"
g
2 6

0

1,0,1 g
2 2

0 3 0 g
2 6

g
6

2,0,"2 0 "
g
6

0 8 0 0

2,0,0 0 "
g
2 6

g
2 6

0 8 0

2,0,2 0 0 g
6

0 0 8

 (4.20) 

The matrix is symmetric and consists of tridiagonal blocks linking adjacent l-multiplets. 

The Hamiltonian is manifestly Hermitian if g is real and is PT symmetric (under {n,i}→ 
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{-n,-i}) if g is imaginary. For large l, the off-diagonal terms tend to g/4, while the 

diagonal terms grow as l2. Consequently, for large l the matrix effectively becomes 

diagonal with minimal mixing, consistent with our approach of diagonalisation based on 

the lowest l-multiplets. The numerical calculations in the next section draw on matrices 

containing up to 10 l-multiplets. 

Eigenvalue Splitting Patterns: gû  or gcos!  potential 

The shifting of E4 energy levels in the first four l-multiplets for a Hermitian potential 

with g real is shown in Figure 20. The eigenvalues in each l-multiplet are split by n, but 

remain degenerate with respect to m. The eigenvalues are shifted from the l(l+2) series 

at g=0, but remain real, and their associated eigenstates remain distinct. The mixing of 

the eigenvalues of the same four l-multiplets when subjected to an imaginary PT-

symmetric potential is shown in Figure 21 and Figure 22. 

 
Figure 20: Eigenvalues for E4 bosonic (W2=0) states under a real g cosψ potential for 

l=0 to 3. The l-multiplets are degenerate with respect to m but split according to n. The 

eigenvalues are real with intercepts on the E axis given by the l(l+2) series. 
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Figure 21: Real components of eigenvalues for E4 bosonic (W2=0) states under an 

imaginary g cosψ potential for l=0 to 4. Intercepts on the E axis are given by the l(l+2) 

series. 

 
Figure 22: Imaginary components of eigenvalues for E4 bosonic (W2=0) states under 

an imaginary g cosψ potential for l=0 to 4. There is a region of unbroken PT symmetry 

before eigenvalues from different l-multiplets combine into complex conjugate pairs. 
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The patterns for the E4 bosonic (W2=0) series are thus similar to those for the E2 

periodic and E3 spin zero series. Pairs of real eigenstates from adjacent multiplets are 

mixed by an imaginary directional potential, with their eigenvalues equalising at a 

critical value of the potential for each pair, as summarised in (4.21). As the potential is 

increased beyond these critical points, the eigenvalues form complex conjugate pairs.  

 

Multiplet !Pairs
l1,l2{ }

Critical !Value
g

0,1{ } 3.4645 I
1,2{ } 7.7374 I
2,3{ } 13.4833 I
2,3{ } 15.0490 I
3,4{ } 20.6662 I

 (4.21) 

The mixing of the first pair occurs at a critical value of Im(g)= 3.4645. Above this 

value, PT symmetry is broken and only some of the eigenvalues remain real. Below this 

value all the eigenvalues are real and we have a region of unbroken PT symmetry. 

Other potentials 

Due to the S3 symmetries of E4, potentials based on any of the û, v̂, x̂, ŷ  behave in a 

similar manner to each other (in the absence of spin) and when coupled to the free 

Hamiltonian by an imaginary parameter g, give rise to PT symmetric potentials that 

have regions of unbroken PT symmetry. For example, a switch between û  and x̂  

corresponds simply to the interchange of m and n quantum numbers. 

As for E2 and E3, the X̂± raising and lowering operators can be obtained from the x̂  

operator from the coordinate similarity transformation ! "! + i# . The X̂± , Û± , Ĵ! ±  

and Ĵ! ±  raising and lowering operators are all PT symmetric and have unbounded 

parametric regions of unbroken PT symmetry. 
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Finally, potentials of the form V = gĴxy  and V = gĴuv  lead to diagonal Hamiltonians, 

which are Hermitian if g is real but PT symmetric if g is imaginary. These Hamiltonians 

have diagonal matrices, with the result that if g is imaginary, then the eigenvalues are 

generally complex, and exhibit regions of unbroken PT symmetry only for m=0 and n=0 

states respectively, for which the potentials vanish. 

Key Findings: E4 

We have shown that we can construct non-Hermitian, but PT symmetric Hamiltonians 

on the E4 manifold, where Ĵ 2  is the Laplacian operator on the E4 manifold defined in 

(4.10): 

 

 

H û( ) = Ĵ 2 + g!û ! or !v̂!or ! x̂!or  ŷ( ) g!imaginary( ),
H U±( ) = Ĵ 2 + g!Û± ! or ! X̂±( ) g!real or imaginary( ),
H Ĵ! ±( ) = Ĵ 2 + g! Ĵ! ± or ! Ĵ" ±( ) g!real or imaginary( ),
H Ĵxy  ( ) = Ĵ 2 + g! Ĵxy  or ! Ĵuv( ) g!imaginary( ).

 (4.22) 

PT symmetric Hamiltonians  H û( )  exhibit regions of unbroken PT symmetry for the 

bosonic spin zero (W2=0) series for imaginary values of g below critical points. We 

have not studied their behaviour in non-zero spin representations. PT symmetric 

Hamiltonians 
 
H Û±( )  and 

 
H Ĵ±( ) , which are based on raising or lowering operators, 

are upper or lower triangular and have unbounded regions of unbroken PT symmetry. 

PT symmetric Hamiltonians 
 
H Ĵxy  ( )  or

 
H Ĵuv  ( )  have regions of unbroken PT 

symmetry only for m=0 (or n=0) quantum states. As before, these Hamiltonians can 

naturally be generalised using rotational symmetries (subject to spin) and should be 

viewed as representatives of equivalence classes. 
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Chapter Five 

Discussion and Conclusions  

Euclidean Group PT symmetric potentials 

This study of the PT symmetry of E2, E3 and E4 has covered a rich landscape of Lie 

Algebras and their representations in terms of quantum mechanical operators and basis 

states. Working with position and momentum operators, we have identified simple 

Hermitian and non-Hermitian but PT symmetric Hamiltonians that can easily be 

constructed using building blocks from the Lie Algebras. The table below summarises 

the key findings of the detailed analysis of E2, E3 and E4. 

Table 3: PT Symmetry of Lie Algebra operators on Euclidean Manifolds 

Operators Type E2 E3 E4

Position
Hermitian
PT!Symmetric
Unbroken!PTS

gû,gv̂
igû,igv̂

Periodic : g < gcrit

gû,gv̂,gŵ
igû,igv̂,igŵ

s = 0* : g < gcrit

gû,gv̂,gx̂,gŷ
igû,igv̂,igx̂,igŷ

W 2 = 0 : g < gcrit

Momentum
Hermitian
PT!Symmetric
Unbroken!PTS

gĴ

igĴ
m = 0!(trivial)

gĴw

igĴw

m = 0

gĴxy ,gĴuv

igĴxy ,igĴuv

m = 0,n = 0

Raising /
Lowering

Hermitian
PT!Symmetric
Unbroken!PTS

-

Ŵ±

All

-

Ŵ± , Ĵ±

All

-

X̂± ,Û± , Ĵ!± , Ĵ"±

All

g is taken as real throughout
* : there are also regions of  unbroken PT Symmetry for m = 0, s!integer states

 

There are clear relationships between the properties of the higher and lower 

dimensioned algebras. This is unsurprising since S1 is a sub-manifold of S2, which is in 

turn a sub-manifold of S3 and the rotation groups are related in a hierarchy SO(2)⊂ 

SO(3) ⊂ SO(4) ≅ SO(3) ⊕ SO(3). We can reasonably conjecture therefore that the 
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general properties identified herein will carry over to Euclidean Group manifolds of 

higher dimension. 

We can shed some theoretical light on the conditions under which PT symmetric 

Hamiltonians exhibit regions of unbroken PT symmetry by analysis of the structure 

(referred to the free eigenstate basis) of the Hamiltonian matrices that incorporate the 

perturbing potential. 

Firstly, consider the case of PT symmetric potentials containing the momentum 

eigenvalue operators. These are already diagonal and therefore the reality of the 

eigenvalues is determined by the reality of the coupling parameter g. Regions of 

unbroken PT symmetry can only arise for states for which the perturbing operator has 

zero eigenvalues and only these states thus have energy eigenvalues which are 

unchanged from the free basis. 

Secondly, consider the case of PT symmetric potentials incorporating a single raising or 

lowering operator. These operators shift quantum numbers in one direction only and 

therefore, by orthogonality of the basis states, have Hamiltonian matrices that are either 

upper or lower triangular, with the free basis eigenvalues on the diagonal. Thus, the 

system eigenvalues are unchanged from the free basis under diagonalisation, even 

though mixing of basis eigenstates occurs. 

The complicated case is that of PT symmetric potentials incorporating a position 

operator multiplied by an imaginary parameter g to give a directional potential. 

Regardless of the spin representation, the PT symmetric Hamiltonians in this latter 

category are represented by symmetric matrices with imaginary off-diagonal terms and 

have a block tridiagonal structure, with each block containing the degenerate basis 

states for each energy or total angular momentum quantum number l. 



PT Symmetric Quantum Mechanics 

 

64 

One important principle is that in order for a Hamiltonian to have entirely real 

eigenvalues, its matrix must have a real trace (since the trace is preserved by the 

similarity transformation required to diagonalise the matrix). This means that, in order 

for the matrix to have entirely real eigenvalues, the imaginary g parameter should not 

appear in the trace. The requirement that the trace of the mixing matrix should be real 

imposes a necessary condition for unbroken PT symmetry that any imaginary potential 

should trace to zero. Put in other words, if a directional potential maps basis states to 

themselves, then it will not generate unbroken PT symmetry. This can be seen, for 

example, in Figure 14 and Figure 15, where the s=1, m=1 state is mixed with itself by 

a directional potential, producing complex eigenvalues for an arbitrarily small 

imaginary coupling parameter. 

Reality of the trace is a necessary, but not a sufficient condition. In particular, we have 

the observation that fermionic representations do not exhibit regions of unbroken PT 

symmetry under imaginary directional potentials, even when their Hamiltonian traces 

are real. 

PT Symmetry of Bosons vs Fermions 

Why is it then that some PT symmetric Hamiltonian matrices with imaginary off-

diagonal terms have real eigenvalues while others do not? 

We can shed some light by considering the different structure of the group 

representations between the half integer fermionic and integer bosonic series. For 

example, in the case of the integer series, the irreps all have an odd number of states, 

while the half-integer irreps have an even number of states. Thus while the basis states 

in half-integer series come in degenerate pairs, the integer series contain unpaired basis 

states. Consider the difference between the following two matrix diagonalisation 
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problems, which have been simplified from those for E2 Hamiltonians with PT 

symmetric directional potentials: 

Diagonalise :
1 ig
ig 1

!

"
#

$

%
& '

1+ ig 0
0 1( ig

!

"
#

$

%
& , (5.1) 

Diagonalise :
1 ig 0
ig 0 ig
0 ig 1

!

"

#
#
#

$

%

&
&
&
'

1 0 0

0 1
2
1+ 1( 8g2( ) 0

0 0 1
2
1( 1( 8g2( )

!

"

#
#
#
#
#

$

%

&
&
&
&
&

. (5.2) 

In the case of (5.1), which is a truncation of a half-integer E2 Hamiltonian, 

diagonalisation always gives a complex conjugate pair of eigenvalues for an arbitrarily 

small parameter g, whereas in the case of (5.2), which is a truncation of an integer E2 

Hamiltonian, the diagonalisation only yields complex conjugate pairs for values of g 

greater than 1/√8. We observe, for example in Figure 3, the lowest two non-degenerate 

integer eigenvalues forming a degenerate pair before splitting into a complex conjugate 

pair. On the other hand, as can be seen in Figure 6, the half-integer states start as 

degenerate pairs and therefore split immediately. 

Differences in the PT symmetric behaviour of periodic and antiperiodic functions have 

also been observed in the study of harmonic potentials on the manifold  !  (Bender et 

al., 1998). Presumably the mechanism at work is similar, since the quantum mechanics 

on S1 reduces to that on  !  as the radius of the circle is increased to infinity (Isham, 

1983). 

Recent work on the PT symmetric quantum field theory of fermionic functions (Bender 

and Klevansky, 2011), (Jones-Smith and Mathur, 2010) considers whether the time 

reversal operator  T  should be endowed with the property  T
2 = !I  for fermions. It has 
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been shown (Brink and Satchler, 1968) that if one requires a wave function to be 

invariant under an anti-linear time reversal operator ! , then ! 2 = I  if the wave function 

has integral angular momentum and ! 2 = "I  if the wavefunction has half-integral 

angular momentum, and that an operator which produces such an effect is given by 

! l,m " #1( )l#m l,#m . However, we do not require the invariance of wavefunctions 

under time reversal in this study and therefore we may just use the time reversal 

operator  T  as defined by complex conjugation as in (1.5). 

Relationship of PT Symmetric Hamiltonians to Klein Gordon Equation  

Before moving to draw conclusions in relation to PT symmetry from this study of 

Euclidean manifolds, it is appropriate to digress on the subject of time, which has not 

been treated in coordinate terms, manifesting itself merely through complex 

conjugation. We can, alternatively, incorporate time in a more explicit manner by 

relating the Hamiltonian equations that we have been studying to Klein Gordon 

equations on underlying curved spacetime manifolds. 

The Klein Gordon equation for a field ! , where  !  represents the d’Alembertian 

operator is: 

  !! " m2! = 0 . (5.3) 

Consider a static manifold that permits a spacelike foliation   ! " ! , with !  

representing its spatial element and  !  representing time, that has a metric of the type: 

 gµ! =
"1 0
0 # ij

$

%
&

'

(
) , (5.4) 
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where ! ij represents the spatial element of the metric and ! ij  has determinant γ.  We 

can expand the Klein Gordon equation on this manifold and decouple the spatial 

Laplacian from the time coordinate: 

 !2" # $20 !" = m2" . (5.5) 

If we look for harmonic solutions of the type ! x,t( ) =" x( )!e# i$ t , then (5.5) assumes 

the form: 

 

  

!"2

H
!# x( ) = !

1
$
%i$

ij $ % j# x( )!!= & 2 ! m2( )
E

" #$ %$
# x( ) . (5.6) 

We can thus recognise the total angular momentum Hamiltonian operator  H  and the 

energy eigenvalues E that we have been dealing with in the cases of the unperturbed E2, 

E3 and E4 systems. Table 4 makes the correspondence between the Hamiltonians we 

have studied and the metrics that generate them (through the Klein Gordon equation) 

more explicit. 

Table 4: Metrics on Euclidean Group Manifolds 

 

metric!ds2 H=Ĵ2 E

E2 !dt 2 + d" 2 !
#2

#" 2
m2

E3
s = 0( ) !dt 2 + d" 2 + sin2"d$ 2 !%"$

2 l l +1( )

E3
s & 0( )

!dt 2

+d" 2 + d$ 2 + d' 2 ! 2cos"d$d'

!%"$
2 …

+2 cos"
sin2"

#
#$

#
#'

!
1

sin2"
#2

#' 2

l l +1( )

E4
!dt 2

+d( 2 + sin2(d" 2 + sin2( sin2"d$ 2
!%"$(

2 l l + 2( )

 

In the absence of spin, the Laplacian follows naturally from the spatial metric through 

the total orbital angular momentum operator representation. The free Hamiltonians that 
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we have developed based on the Lie Algebras of the E2, E3 and E4 manifolds thus have 

counterparts in terms of the Klein Gordon equations derived using the spatial metrics 

underlying these manifolds. 

In the case of spin, the situation is more complicated. The total angular momentum 

operator (including spin) for E3 (3.15) can be derived via the Klein Gordon equation 

from a metric that includes an extra compact dimension with coordinate χ . If we form 

the Laplacian using the metric for E3 (s≠0) we obtain: 

 Ĵ 2 = !"#$%
2 = ! "#$

2 ! 2 cos#
sin2#

&2

&$&%
+

1
sin2#

&2

&% 2

'
()

*
+,

. (5.7) 

The Klein Gordon equation based on this Laplacian has solutions that incorporate the 

E3 generalised spherical harmonics, discussed in Chapter Three, coupled to harmonic 

evolution over this third angular coordinate (Willard Miller, 1964) :  

 ! ",#,$( ) = Ys,ml ",#( )exp is$( ) . (5.8) 

Substituting (5.7) and (5.8) into the Klein Gordon equation and eliminating χ then 

recovers (3.15). 

Thus, in the case of spin, the Euler angles in the wavefunction solutions of the total 

angular momentum operator can only be described on a manifold of higher 

dimensionality than the manifold describing position; exploring spin solutions to the Lie 

Algebra of E3 requires a position configuration space larger than the S2 spatial manifold 

that we started with. 

If we consider perturbations to the metric, these naturally correspond to perturbations to 

the Klein Gordon equation. Metric coefficients are real, but in principle it is possible to 
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introduce complex terms into the expanded Klein Gordon equation starting from a 

general real metric: 

 !2" +
1
#g

$0g
i0 #g$i" + $ig

i0 #g$0" + $0g
00 #g$0"( ) = m2" . (5.9) 

Complex terms in (5.9) could be generated, for example, from the harmonic time 

evolution of !  combined either with time variations in the g00 element, or with 

spatially varying g0i elements. Thus the introduction of complex terms into the Klein 

Gordon equation by modifications to the metric might provide a route for studying PT 

symmetric potentials against background metrics. The algebraic relationships between 

changes to the metric and the resulting perturbations to the Klein Gordon equation are 

however complicated. 

Relationship of PT Symmetric Hamiltonians to Lie Algebras 

By contrast, we have seen that a group theoretic approach can provide a practical 

framework for constructing PT symmetric Hamiltonians as perturbations to the free 

Hamiltonian for quantum states on some manifold. What is intriguing is that the Lie 

Algebra framework incorporates PT symmetric Hamiltonians just as naturally as 

Hermitian Hamiltonians. 

The PT symmetric Hamiltonians that we have studied essentially fall into two 

categories. The first category incorporates Lie Algebra raising or lowering operators; 

these are associated with upper or lower triangular Hamiltonians and lead to unbounded 

regions of unbroken PT symmetry for all representations. The second category 

incorporates position or momentum operators (multiplied by imaginary parameters); 

these PT Symmetric Hamiltonians have limited regions of unbroken PT symmetry 
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(essentially just for zero spin representations). Outside these regions of unbroken PT 

symmetry this second category has complex energy eigenvalues. 

These behaviours arise because the manifolds studied are highly symmetric and 

therefore have multiple degenerate basis eigenstates that are related by Parity and Time 

Reversal (complex conjugation) symmetries.  

Just as there is a fundamental difference in a Lie Algebra between root and 

raising/lowering operators, the different corresponding categories of PT symmetric 

Hamiltonians have different characteristic modes of mixing basis eigenstates and only 

certain of these modes give rise to regions of unbroken PT symmetry. 

A further important observation is that the question as to whether a given PT symmetric 

Hamiltonian has unbroken or broken PT symmetry does not always permit an absolute 

answer. Thus, while the reality of its trace is a necessary condition for a Hamiltonian to 

have a region of unbroken PT symmetry, it is not a sufficient condition. For some 

Hamiltonians, such as those incorporating directional potentials, the emergence of 

unbroken PT symmetry depends crucially on the irrep within which we are working. 

Specifically, while we have identified regions of unbroken PT symmetry for zero spin 

bosonic representations, we have so far been unable to identify such regions for 

fermionic representations perturbed by directional potentials. (The situation for non-

zero spin bosonic representations depends on the orientation of their orbital and spin 

momenta relative to the potential). 

Thus, it appears clear that the presence of a region of unbroken PT symmetry is not 

simply a property of a given Hamiltonian but rather a property of the interactions 

between the Hamiltonian and a chosen wavefunction representation. 
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We have not attempted generally to reconstruct the Hermitian versions of all the PT 

symmetric Hamiltonians with unbroken PT symmetry that we have studied, since we 

have been working within a truncated (and therefore inexact) matrix mechanics 

framework, which does not lend itself to inversion of the underlying analytic 

relationships. We can however note the examples given in (2.12) and (3.29) of PT 

symmetric Hamiltonians incorporating raising/lowering operators that are related by 

similarity transformations effected by diffeomorphisms (coordinate displacements in the 

complex plane) to Hermitian Hamiltonians. 

The approach set out herein can in principle be generalised, by use of commutation and 

recursion relations, to determine the PT symmetric properties of the many potentials 

that can be constructed as linear combinations, or even power series, of the various 

elements of a Lie Algebra. These operator combinations may be Hermitian or PT 

symmetric or neither. If PT symmetric, they may or may not have regions of unbroken 

PT symmetry, depending on the structure of their Hamiltonian matrices. 

Stable and Unstable Systems 

The importance of real eigenvalue solutions to the Klein Gordon or Schrodinger 

equations is that they represent states that are harmonic and thus stable over time, rather 

than decaying or increasing exponentially. Furthermore, since real eigenvalues ensure 

unitary evolution, !0 " eiHt !0 =U !0 , where H is Hermitian and U is unitary, 

the norm of a state ! ! , which is usually interpreted as a probability, is preserved 

over time. We saw in Chapter One how to modify the inner product definition so that 

non-Hermitian Hamiltonians with real eigenvalues can be assigned norms that are 

preserved over time. However this is no longer the case once eigenvalues become 
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complex and in order to work consistently with complex eigenvalues, it would be 

necessary to introduce decay/growth correction factors into the inner product. Non-

unitary evolution therefore would create complications in the interpretation of 

probabilities. 

On the other hand, traditional quantum theory continues to offer little fundamental 

insight into the nature of the transition from one quantum state to another, giving rise to 

the well known measurement paradoxes (Penrose, 2004). Under unitary evolution, a 

state evolves without losing or gaining information; Schrödinger’s cat can evolve only 

into a superposition of states and the question as to whether the cat is alive or dead can 

never be definitively resolved. With non-Hermitian matrices, we have a mechanism for 

non-unitary evolution, in which a system could lose or gain information by states 

decaying in an irreversible manner. The boundary in PT symmetric systems between 

regions of unbroken and broken PT symmetry is a boundary at which phase transitions 

to such non-unitary behaviour could occur. 

Conclusions 

In conclusion, this study of PT symmetric quantum mechanics on E2, E3 and E4 has 

identified different types of PT symmetric Hamiltonian. These include PT symmetric 

Hamiltonians that have unbounded regions of unbroken PT symmetry, where all 

eigenvalues are real, as well as PT symmetric Hamiltonians which have limited 

parametric regions of unbroken PT symmetry. In this later category, the existence of 

unbroken PT symmetry depends on the group representation as well as on the values of 

coupling parameters. In particular there appears to be a fundamental difference between 

the PT symmetric behaviour of bosonic zero spin and fermionic representations, with 

fermionic representations facing PT symmetry breaking for certain given forms of 
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Hamiltonian under which zero spin bosonic representations enjoy unbroken PT 

symmetry. 

Also, there appear to be fundamental differences between the interactions of raising and 

lowering operators, which are non-Hermitian but PT symmetric, and those of root 

operators, such as momentum or position operators, which can be used to construct 

either Hermitian or PT symmetric Hamiltonians. 

In all cases, the interplay between the structure of a Hamiltonian, in terms of its 

constituent Lie Algebra operators, and the irreps of the relevant Euclidean group 

determines the pattern of PT symmetry breaking. 

Further Work 

The E2, E3, and E4 manifolds, being rotationally symmetric and compact, represent a 

small subset of spatial manifolds, and their natural embedding in spacetime takes the 

form of metrics described by (5.4), which in turn represent a small subset of spacetime 

manifolds. The prerequisites of the approach developed herein, which involves building 

upon the Lie Algebras of position and momentum operators over a manifold, are a high 

degree of symmetry. There appears no reason a priori, therefore, why it should not be 

possible to apply this approach to explore the PT symmetric quantum theory of open 

and/or hyperbolic rather than compact spatial manifolds and also to study manifolds 

where time and space are coupled in a non-trivial manner. 

Also, this study of non-zero spin representations has been limited to E3. It is clear that 

the introduction of spin has significant consequences for the PT symmetric quantum 

behaviour of E3 and we cannot entirely predict the behaviours of non-zero spin 

representations (W2≠0) of E4 (and higher dimensioned manifolds) from those of E3. 
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Thus it should be interesting, not only to extend the E4 work to cover non-zero spin 

representations, but also to study the PT symmetry of spacetimes with a high degree of 

symmetry such as Anti deSitter and deSitter and also to extend the analysis to spacetime 

manifolds whose metrics incorporate spin, such as Kerr-Newman spacetimes. 
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Appendices 

Normalisation of E4 Eigenstates 

 

The normalisation of the top state in any E4 l-multiplet is given by:

l,0,l l,0,l = Nl
2 sin2! sin"d!d"d#

volume element
! "### $###$ cos2! + cos2" sin2!( )l

= Nl
2 2% 2

1+ l
& 1.

So: Nl =
1
%

1+ l
2

.

We can normalise any other state in the multiplet relative to the top state using the E4 
commutation  relations as follows:

l, m,n = Nlmn ! Ĵ' (
l(m(n( )/2 ! Ĵ)(

l+m(n( )/2 l,0,l ,

l,m,n l,m,n = Nlmn
2 l,0,l Ĵ)+

l+m(n( )/2 Ĵ' +
l(m(n( )/2 ! Ĵ' (

l(m(n( )/2 ! Ĵ)(
l+m(n( )/2 l,0,l

= Nlmn
2 l,0,l Ĵ' +

l(m(n( )/2 ! Ĵ' (
l(m(n( )/2 ! Ĵ)+

l+m(n( )/2 Ĵ)(
l+m(n( )/2 l,0,l .

From the Lemma,  setting r=0 :

Ĵ)+
p ! Ĵ)(

p l,0,l = Ĵ' +
p ! Ĵ' (

p l,0,l = 4 p p!l!
l ( p( )! l,0,l .

So: l,m,n l, m,n = Nlmn
2 l,0,l 4 l(n l ( m ( n( ) / 2!l!

l + m + n( ) / 2!
!

l + m ( n( ) / 2!l!
l ( m + n( ) / 2!

l,0,l & 1.

So: Nlmn
2 =

1
4 l(n

l + m + n( ) / 2! l ( m + n( ) / 2!
l ( m ( n( ) / 2! l + m ( n( ) / 2!l!l!

.

So: Nlmn =
1

2l(n l!
l + m + n( ) / 2! l ( m + n( ) / 2!
l ( m ( n( ) / 2! l + m ( n( ) / 2!

.

Lemma :

Consider:! Ĵ' +
p( r ! Ĵ' (

p l,0,l

= Ĵ' +
p( r(1Ĵ' + ! Ĵ' ( Ĵ' (

p(1 l,0,l

= Ĵ' +
p( r(1 4 Ĵuv + Ĵxy( ) Ĵ' (

p(1 + Ĵ' ( 4 Ĵuv + Ĵxy( ) Ĵ' (
p(2 +…Ĵ' (

p(1 4 Ĵuv + Ĵxy( )*
+

,
- l,0,l

= Ĵ' +
p( r(1 4 l ( 2 p (1( )( ) Ĵ' (

p(1 + Ĵ' ( 4 l ( 2 p ( 2( )( ) Ĵ' (
p(2 +…Ĵ' (

p(1 4 l + 0( )*+ ,- l,0,l

= 4 p l ( p (1( )*+ ,- Ĵ' +
p( r(1Ĵ' (

p(1 l,0,l .

So: Ĵ' +
p( r ! Ĵ' (

p l,0,l = 4 p( r p!
r!

l ( r( )!
l ( p( )! l,0,l .

A similar result applies for Ĵ)+
p( r ! Ĵ)(

p .
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Calculation of E4 Matrix Elements 

We wish to obtain the matrix element: !l , !m , !n û l,m,n = !l , !m , !n
1
2
U+ +U"( ) l,m,n .

Recall: Ĵ# " ,U"$% &' = Ĵ(" ,U"$% &' = Ĵ(+ ,U+$% &' = Ĵ# + ,U+$% &' = Ĵ# ± , Ĵ( ±$% &' = 0,  where

U+  raises n leaving m fixed, Ĵ# + !raises both n and m, and Ĵ(+  raises n while lowering m.

So: l,m,n = Nlmn Ĵ# "
l"m"n( )/2 ! Ĵ("

l+m"n( )/2 l,0,l ,

!l , !m , !n U+ l,m,n = N !l !m !n Nlmn !l ,0, !l Ĵ# +
!l " !m " !n( )/2 ! Ĵ(+

!l + !m " !n( )/2U+ Ĵ# "
l"m"n( )/2 ! Ĵ("

l+m"n( )/2 l,0,l

= N !l !m !n Nlmn !l ,0, !l U+ Ĵ# +
!l " !m " !n( )/2 Ĵ# "

l"m"n( )/2 ! Ĵ(+
!l + !m " !n( )/2 ! Ĵ("

l+m"n( )/2 l,0,l .

For a non-zero matrix element we require !n = n +1 and !m = m action of U+( ).
Consider the numerical bounds on l for non-anihilation of top state l,0,l  by Ĵ# +and Ĵ(+ . 
We require : l + m " n ) !l + !m " !n ,
And : l " m " n ) !l " !m " !n .
So: !l * l +1.
So: !l = l +1" 2r,  where r is an integer "0.
So: !l , !m , !n U+ l,m,n

= N !l !m !n Nlmn l +1" 2r,0,l +1" 2r U+ Ĵ# +
l"m"n( )/2" r Ĵ# "

l"m"n( )/2 ! Ĵ(+
l+m"n( )/2" r ! Ĵ("

l+m"n( )/2 l,0,l .

Now : Nlmn =
1

2l"n l!
l + m + n( ) / 2! l " m + n( ) / 2!
l " m " n( ) / 2! l + m " n( ) / 2!

.

And: Ĵ(+
p" r ! Ĵ("

p l,0,l = 4 p" r p!
r!

l " r( )!
l " p( )!.

So: !l , !m , !n U+ l,m,n = F l,m,n,r( ) l +1" 2r,0,l +1" 2r U+ Ĵ# "
r !! Ĵ("

r l,0,l .

Where:F l,m,n,r( ) = N !l !m !n Nlmn4 l"n"2r l " r( )! l " r( )! l " m " n( ) / 2! l + m " n( ) / 2!
r!r! l + m + n( ) / 2! l " m + n( ) / 2!

.

Now, since Ĵ# "  anihilates the top state on the left and Ĵ# " , Ĵ("$% &' = 0:

l +1" 2r,0,l +1" 2r U+ Ĵ# "
r !! Ĵ("

r l,0,l

= l +1" 2r,0,l +1" 2r U+ , Ĵ# "$% &'! Ĵ(" Ĵ# "
r"1 ! Ĵ("

r"1 l,0,l

= 2 l +1" 2r,0,l +1" 2r X" , Ĵ("$% &' Ĵ# "
r"1 ! Ĵ("

r"1 l,0,l

= 4 l +1" 2r,0,l +1" 2r U" Ĵ# "
r"1 ! Ĵ("

r"1 l,0,l

= 0 for r>1, since Ĵ# " ,U"$% &' = 0 and the Ĵ# "  anihilate on the left.

We are left with r=0 and r=1 as the only possibilities.
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Now : F l,m,n,0( ) = 1
2 l +1( ) l + m + n + 2( ) l ! m + n + 2( ).

And : F l,m,n,1( ) = 1
8l

l + m ! n( ) l ! m ! n( ).
So we have for r=0 and r=1 respectively:

l +1,m,n +1U+ l,m,n =
1

2 l +1( ) l + m + n + 2( ) l ! m + n + 2( ) l +1,0,l +1U+ l,0,l ,

l !1,m,n +1U+ l,m,n =
1
2l

l + m ! n( ) l ! m ! n( ) l !1,0,l !1U! l,0,l .

Taking the Hermitian conjugate for r=0 and letting l" l-1,!n " n !1:

l !1,m,n !1U! l,m,n =
1
2l

l + m + n( ) l ! m + n( ) l !1,0,l !1U! l,0,l .

Taking the Hermitian conjugate for r=1 and letting l" l+1,!n " n !1:

l +1,m,n !1U! l,m,n =
1

2 l +1( ) l + m ! n + 2( ) l ! m ! n + 2( ) l +1,0,l +1U+ l,0,l .

We can evaluate the matrix elements with the top state analytically:
l +1,0,l +1U+ l,0,l

= Nl+1Nl vol# cos$ ! i cos% sin$( )l+1 cos$ + i cos% sin$( )
U+

! "### $###
cos$ + i cos% sin$( )l

= Nl+1Nl vol# cos2$ + cos2% sin2$( )l+1

=
1
&

2 + l
2

1
&

1+ l
2

2& 2

2 + l

=
l +1
l + 2

.

Similarly:

l !1,0,l !11U! l,0,l =
l

l +1
,

l !1,0,l !1U! l,0,l =
l

l +1
,

l +1,0,l +1U+ l,0,l =
l +1
l + 2

.
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So we can derive matrix elements for the raising and lowering operators:

l +1,m,n +1U+ l,m,n =
1
2

l + m + n + 2( ) l ! m + n + 2( )
l +1( ) l + 2( ) ,

l !1,m,n +1U+ l,m,n =
1
2

l + m ! n( ) l ! m ! n( )
l l +1( ) ,

l !1,m,n !1U! l,m,n =
1
2

l + m + n( ) l ! m + n( )
l l +1( ) ,

l +1,m,n !1U! l,m,n =
1
2

l + m ! n + 2( ) l ! m ! n + 2( )
l +1( ) l + 2( ) .

These!combine to give matrix elements for the position operator:

l +1,m,n +1 û l,m,n =
1
4

l + m + n + 2( ) l ! m + n + 2( )
l +1( ) l + 2( ) ,

l !1,m,n +1 û l,m,n =
1
4

l + m ! n( ) l ! m ! n( )
l l +1( ) ,

l !1,m,n !1 û l,m,n =
1
4

l + m + n( ) l ! m + n( )
l l +1( ) ,

l +1,m,n !1 û l,m,n =
1
4

l + m ! n + 2( ) l ! m ! n + 2( )
l +1( ) l + 2( ) .

It should be noted that we need to specify the phases of the various eigenstates and that 
a conventional choice, consistently applied, will determine the signs of the various 
matrix elements.
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